版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省9+1高中联盟长兴中学2024届数学高一上期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,共60分)1.若,且,则的值是A. B.C. D.2.当时,函数(,),取得最小值,则关于函数,下列说法错误的是()A.是奇函数且图象关于点对称B.偶函数且图象关于点(π,0)对称C.是奇函数且图象关于直线对称D.是偶函数且图象关于直线对称3.若命题“,使得”为真命题,则实数a的取值范围是()A. B.C. D.4.下列函数中最小值为6的是()A. B.C D.5.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是A. B.C. D.6.下列各选项中的两个函数的图象关于y轴对称的是()A.与 B.与C.与 D.与7.下列六个关系式:⑴其中正确的个数为()A.6个 B.5个C.4个 D.少于4个8.下列函数中,以为最小正周期且在区间上为增函数的函数是()A. B.C. D.9.已知函数是上的奇函数,且对任意实数、当时,都有.如果存在实数,使得不等式成立,则实数的取值范围是A. B.C. D.10.已知函数的部分图象如图所示,若函数的图象由的图象向右平移个单位长度得到,则()A. B.C. D.11.已知函数是定义在上奇函数.且当时,,则的值为A. B.C. D.212.已知集合,,则A∩B中元素的个数为()A.2 B.3C.4 D.5二、填空题(本大题共4小题,共20分)13.一个底面积为1的正四棱柱的八个顶点都在同一球面上,若这个正四棱柱的高为,则该球的表面积为__________14.已知直线过点.若直线在两坐标轴上的截距相等,求直线的方程______.15.当时,,则a的取值范围是________.16.边长为2的菱形中,,将沿折起,使得平面平面,则二面角的余弦值为__________三、解答题(本大题共6小题,共70分)17.如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=2,D,E分别为棱AB,BC的中点,M为棱AA1的中点(1)证明:A1B1⊥C1D;(2)若AA1=4,求三棱锥A﹣MDE的体积18.已知函数图象的一个最高点坐标为,相邻的两对称中心的距离为求的解析式若,且,求a的值19.已知平面直角坐标系内两点A(4,0),B(0,3).(1)求直线AB方程;(2)若直线l平行于直线AB,且到直线AB的距离为2,求直线l的方程.20.已知α是第二象限角,且tanα=-(1)求sinα,cos(2)求sinα-5π+21.已知函数.(1)求的定义域;(2)判断的奇偶性并予以证明;(3)求不等式的解集.22.若函数f(x)满足f(logax)=·(x-)(其中a>0且a≠1).(1)求函数f(x)的解析式,并判断其奇偶性和单调性;(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】由已知利用同角三角函数基本关系式可求,的值,即可得解【详解】由题意,知,且,所以,则,故选B【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,其中解答中熟练应用同角三角函数的基本关系式,准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.2、C【解析】根据正弦型函数的性质逐一判断即可.【详解】因为当时,函数取得最小值,所以,因为,所以令,即,所以,设,因为,所以函数是奇函数,因此选项B、D不正确;因为,,所以,因此函数关于直线对称,因此选项A不正确,故选:C3、B【解析】在上有解,利用基本不等式求出的最小值即可.【详解】即在上有解,所以在上有解,由,当且仅当,即时取得等号,故故选:B4、B【解析】利用基本不等式逐项分析即得.【详解】对于A,当时,,故A错误;对于B,因为,所以,当且仅当,即时取等号,故B正确;对于C,因为,所以,当且仅当,即,等号不能成立,故C错误;对于D,当时,,故D错误.故选:B.5、C【解析】将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-);再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C.6、A【解析】根据题意,逐一分析各选项中两个函数的对称性,再判断作答.【详解】对于A,点是函数图象上任意一点,显然在的图象上,而点与关于y轴对称,则与的图象关于y轴对称,A正确;对于B,点是函数图象上任意一点,显然在的图象上,而点与关于原点对称,则与的图象关于原点对称,B不正确;对于C,点是函数图象上任意一点,显然在的图象上,而点与关于x轴对称,则与的图象关于x轴对称,C不正确;对于D,点是函数图象上任意一点,显然在的图象上,而点与关于直线y=x对称,则与的图象关于直线y=x对称,D不正确.故选:A7、C【解析】根据集合自身是自身的子集,可知①正确;根据集合无序性可知②正确;根据元素与集合只有属于与不属于关系可知③⑤不正确;根据元素与集合之间的关系可知④正确;根据空集是任何集合的子集可知⑥正确,即正确的关系式个数为个,故选C.点睛:本题主要考查了:(1)点睛:集合的三要素是:确定性、互异性和无序性,;(2)元素和集合之间是属于关系,子集和集合之间是包含关系;(3)不含任何元素的集合称为空集,空集是任何集合的子集8、B【解析】对四个选项依次判断最小正周期及单调区间,即可判断.【详解】对于A,,最小正周期为,单调递增区间为,即,在内不单调,所以A错误;对于B,的最小正周期为,单调递增区间为,即,在内单调递增,所以B正确;对于C,的最小正周期为,所以C错误;对于D,的最小正周期为,所以D错误.综上可知,正确的为B故选:B【点睛】本题考查了函数的最小正周期及单调区间的判断,根据函数性质判断即可,属于基础题.9、A【解析】∵f(x)是R上的奇函数,∴,不妨设a>b,∴a﹣b>0,∴f(a)﹣f(b)>0,即f(a)>f(b)∴f(x)在R上单调递增,∵f(x)为奇函数,∴f(x﹣c)+f(x﹣c2)>0等价于f(x﹣c)>f(c2﹣x)∴不等式等价于x﹣c>c2﹣x,即c2+c<2x,∵存在实数使得不等式c2+c<2x成立,∴c2+c<6,即c2+c﹣6<0,解得,,故选A点睛:处理抽象不等式的常规方法:利用单调性及奇偶性,把函数值间的不等关系转化为具体的自变量间的关系;同时注意区分恒成立问题与存在性问题.10、A【解析】结合图象利用五点法即可求得函数解析式.【详解】由图象可得解得,因为,所以.又因为,所以因为,所以,,即,.又因为,所以..故选:A.11、B【解析】化简,先求出的值,再根据函数奇偶性的性质,进行转化即可得到结论【详解】∵,∴,是定义在上的奇函数,且当时,,∴,即,故选B【点睛】本题主要考查函数值的计算,考查了对数的运算以及函数奇偶性的应用,意在考查灵活应用所学知识解答问题的能力,属于基础题12、B【解析】采用列举法列举出中元素的即可.【详解】由题意,,故中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.二、填空题(本大题共4小题,共20分)13、【解析】底面为正方形,对角线长为.故圆半径为,故球的表面积为.【点睛】本题主要考查几何体的外接球问题.解决与几何体外接球有关的数学问题时,主要是要找到球心所在的位置,并计算出球的半径.寻找球心的一般方法是先找到一个面的外心,如本题中底面正方形的中心,球心就在这个外心的正上方,根据图形的对称性,易得球心就在正四棱柱中间的位置.14、或【解析】根据已知条件,分直线过原点,直线不过原点两种情况讨论,即可求解【详解】解:当直线过原点时,斜率为,由点斜式求得直线的方程是,即,当直线不过原点时,设直线的方程为,把点代入方程可得,故直线的方程是,综上所述,所求直线的方程为或故答案为:或.15、【解析】分类讨论解一元二次不等式,然后确定参数范围【详解】,若,则或,此时时,不等式成立,若,则或,要满足题意,则,即综上,故答案为:16、【解析】作,则为中点由题意得面作,连则为二面角的平面角故,,点睛:本题考查了由平面图形经过折叠得到立体图形,并计算二面角的余弦值,本题关键在于先找出二面角的平面角,依据定义先找出平面角,然后根据各长度,计算得结果三、解答题(本大题共6小题,共70分)17、(1)证明见解析(2)【解析】(1)通过证明AB⊥CD,AB⊥CC1,证明A1B1⊥平面CDC1,然后证明A1B1⊥C1D;(2)求出底面△DCE的面积,求出对应的高,即点到底面DCE的距离,然后求解四面体M-CDE的体积,由三棱锥A﹣MDE的体积就是三棱锥M﹣CDE的体积得结论.【详解】(1)证明:∵∠ACB=90°,AC=BC=2,∴AB⊥CD,AB⊥CC1,CD∩CC1=C,∴AB⊥平面CDC1,∵A1B1∥AB,∴A1B1⊥平面CDC1,∵C1D平面CDC1,∴A1B1⊥C1D;(2)解:三棱锥A﹣MDE的体积就是三棱锥M﹣CDE的体积,AC=BC=2,D,E分别为棱AB,BC的中点,M为棱AA1的中点.AA1=4,所以AM=2,AB⊥CD,三棱锥A﹣MDE的体积:【点睛】本题考查线面垂直,考查点到面的距离,解题的关键是利用线面垂直证明线线线垂直,利用等体积法求点到面的距离,是中档题18、(1);(2)或【解析】根据函数图象的最高点的坐标以及对称中心的距离求出周期和和的值即可;根据条件进行化简,结合三角函数值的对应性进行求解即可【详解】图象相邻的两对称中心的距离为,即,则,即,图象上一个最高点为,∴,则,,即,∵,∴,∴,即,则,即函数的解析式为,若,则,即,即,∵,∴,∴或,即或【点睛】本题主要考查三角函数的图象和性质根据条件求出函数的解析式是解决本题的关键,属于中档题.19、(1)(2)或【解析】(1)由直线方程的两点式可求解;(2)根据直线的平行关系及平行直线之间的距离公式可求解.【小问1详解】∵A(4,0),B(0,3)由两点式可得直线AB的方程为,即.【小问2详解】由(1)可设直线l:,∴,解得或.∴直线l的方程为或.20、(1)sinα=(2)713【解析】(1)解方程组sin2(2)直接利用诱导公式化简求值.【小问1详解】解:因为tanα=-5又sin2α+所以sinα=【小问2详解】解:sin=-21、(1).(2)见解析;(3)【解析】(1)根据对数函数的定义,列出关于自变量x的不等式组,求出的定义域;(2)由函数奇偶性的定义,判定在定义域上的奇偶性;(3)化简,根据对数函数的单调性以及定义域,求出不等式>1的解集.试题解析:(1)要使函数有意义.则,解得.故所求函数的定义域为(2)由(1)知的定义域为,设,则.且,故为奇函数.(3)因为在定义域内是增函数,因为,所以,解得.所以不等式的解集是22、(1)见解析.(2)[2-,1)∪(1,2+]【解析】试题分析:(1)利用换元法求函数解析式,注意换元时元的范围,再根据奇偶性定义判断函数奇偶性,最后根据复合函数单调性性质判断函数单调性(2)不等式恒成立问题一般转化为对应函数最值问题:即f(x)最大值小于4,根据函数单调性确定函数最大值,自在解不等式可得a的取值范围试题解析:(1)令logax=t(t∈R),则x=at,∴f(t)=(at-a-t)∴f(x)=(ax-a-x)(x∈R)∵f(-x)=(a-x-ax)=-(ax-a-x)=-f(x),∴f(x)为奇函数当a>1时,y=ax为增函数,y=-a-x为增函数,且>0,∴f(x)为增函数当0<a<1时,y=ax为减函数,y=-a-x为减函数,且<0,∴f(x)为增函数.∴f(x)在R上为增函数(2)∵f(x)是R
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 04版北京市一手房购买居间合同
- 皮肤伤口用药剂市场发展预测和趋势分析
- 2024年度卫星通讯技术研发合同
- 节日装饰彩色小灯市场需求与消费特点分析
- 2024年度大米进口关税减免合同跨国贸易特别条款
- 2024年度工程事故处理合同
- 2024年度保险合同:叉车设备及其作业保险服务
- 2024年度技术服务合同的服务内容与服务期限
- 2024年度深圳艺术家工作室租赁合同with创作支持和展览权益
- 2024年度房屋租赁合同纠纷解决途径协议
- 质量管理工程生涯规划
- 几类特种玻璃简介课件
- 医院培训课件:《ECMO概述及其护理》
- 蜡烛香薰知识讲座
- 《欧洲的启蒙运动》课件
- 《变压器原理与应用》课件
- 2024年陕西陕煤铜川矿业有限公司招聘笔试参考题库含答案解析
- RCA根本原因分析法在护理不良事件中的应用课件
- 配电工程施工方案高低压配电工程施工组织设计
- 《矿用传感器》课件
- 跌倒护理专案改善案例课件
评论
0/150
提交评论