高中专题复习及考试要求 第七章 立体几何与空间向量 第1节 空间几何体的结构、三视图和直观图_第1页
高中专题复习及考试要求 第七章 立体几何与空间向量 第1节 空间几何体的结构、三视图和直观图_第2页
高中专题复习及考试要求 第七章 立体几何与空间向量 第1节 空间几何体的结构、三视图和直观图_第3页
高中专题复习及考试要求 第七章 立体几何与空间向量 第1节 空间几何体的结构、三视图和直观图_第4页
高中专题复习及考试要求 第七章 立体几何与空间向量 第1节 空间几何体的结构、三视图和直观图_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1节空间几何体的结构、三视图和直观图考试要求1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.知

理1.空间几何体的结构特征(1)多面体的结构特征名称棱柱棱锥棱台图形底面互相_______且_______多边形互相_______且_______侧棱______________相交于_______,但不一定相等延长线交于_______侧面形状___________________________________平行全等平行相似平行且相等一点一点平行四边形三角形梯形(2)旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相等,_________于底面相交于_______延长线交于_______

轴截面_____________________________________侧面展开图_____________________

一点一点矩形等腰三角形等腰梯形圆矩形扇形扇环垂直2.直观图空间几何体的直观图常用___________画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为______________,z′轴与x′轴、y′轴所在平面_______.(2)原图形中平行于坐标轴的线段,直观图中仍分别__________坐标轴.平行于x轴和z轴的线段在直观图中保持原长度_______,平行于y轴的线段长度在直观图中变为原来的_______.斜二测45°(或135°)垂直平行于不变一半3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的_______方、正左方、_______方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,___________,宽相等.②在画三视图时,重叠的线只画一条,挡住的线要画成虚线.正前正上高平齐[常用结论与微点提醒]1.常见旋转体的三视图 (1)球的三视图都是半径相等的圆. (2)水平放置的圆锥的正视图和侧视图均为全等的等腰三角形. (3)水平放置的圆台的正视图和侧视图均为全等的等腰梯形. (4)水平放置的圆柱的正视图和侧视图均为全等的矩形.2.在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”.在三视图的判断与识别中要特别注意其中的虚线.诊

测1.判断下列结论正误(在括号内打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.(

)(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.(

)(3)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.(

)(4)正方体、球、圆锥各自的三视图中,三视图均相同.(

)解析(1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.(2)反例:如图所示的图形满足条件但不是棱锥.(3)用斜二测画法画水平放置的∠A时,把x,y轴画成相交成45°或135°,平行于x轴的线段还平行于x轴,平行于y轴的线段还平行于y轴,所以∠A可能为45°也可能为135°.(4)球的三视图均相同,而圆锥的正视图和侧视图相同,且为等腰三角形,

其俯视图为圆心和圆,正方体的三视图不一定相同.答案(1)×

(2)×

(3)×

(4)×2.(新教材必修第二册P112T5改编)一个菱形的边长为4cm,一内角为60°,用斜二测画法画出的这个菱形的直观图的面积为(

)答案B3.(老教材必修2P10B组T1改编)如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′.剩下的几何体是(

)A.棱台

B.四棱柱C.五棱柱

D.六棱柱解析由几何体的结构特征,剩下的几何体为五棱柱.答案

C4.(2020·衡水中学联考)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈、长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知该楔体的正视图和俯视图如图中粗实线所示,则该楔体的侧视图的周长为(

)答案C5.(2019·济宁一中月考)如图为某个几何体的三视图,根据三视图可以判断这个几何体为(

)A.圆锥 B.三棱椎C.三棱柱

D.三棱台解析三由视图可知,该几何体是一个横放的三棱柱,故选C.答案C6.(2018·全国Ⅲ卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是(

)解析由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.答案

A考点一空间几何体的结构特征【例1】(1)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是(

)A.0 B.1 C.2 D.3解析

(1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转一周形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.(2)(多选题)下列说法正确的是(

)A.棱柱的侧棱都相等,侧面都是全等的平行四边形B.在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱C.存在每个面都是直角三角形的四面体D.棱台的侧棱延长后交于一点(2)A不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;B正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;C正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形;D正确,由棱台的概念可知.答案

(1)A

(2)BCD规律方法1.关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例.2.圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.3.既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.【训练1】

下列命题正确的是(

)A.两个面平行,其余各面都是梯形的多面体是棱台B.两个面平行且相似,其余各面都是梯形的多面体是棱台C.以直角梯形的一条直角腰所在的直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体是圆台D.用平面截圆柱得到的截面只能是圆和矩形解析如图所示,可排除A,B选项.只有截面与圆柱的母线平行或垂直时,截得的截面才为矩形或圆,否则为椭圆或椭圆的一部分.答案C考点二空间几何体的三视图

多维探究角度1由几何体的直观图判断三视图答案B规律方法由直观图确定三视图,一要根据三视图的含义及画法和摆放规则确认.二要熟悉常见几何体的三视图.角度2由三视图判断几何体【例2-2】

(2018·全国Ⅰ卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为(

)答案B规律方法由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面.(2)根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.【训练2】(1)(角度1)如图所示,在正方体ABCD-A1B1C1D1中,E为棱BB1的中点,过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的侧视图为(

)解析(1)如图所示,过点A,E,C1的截面为AEC1F,则剩余几何体的侧视图为选项C中的图形.连接MN,则M到N的路径中,最短路径的长度为MN,在△OMN中,由余弦定理得答案(1)C

(2)D考点三空间几何体的直观图【例3】

已知正三角形ABC的边长为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论