版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西壮族自治区南宁市兴宁区第三中学数学高一下期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙下成平局的概率为()A.50% B.30% C.10% D.60%2.在中,若,则下列结论错误的是()A.当时,是直角三角形 B.当时,是锐角三角形C.当时,是钝角三角形 D.当时,是钝角三角形3.若实数满足约束条件,则的最大值是()A. B.0 C.1 D.24.设复数(是虚数单位),则在复平面内,复数对应的点的坐标为()A. B. C. D.5.等差数列中,,则的值为()A.14 B.17 C.19 D.216.已知等差数列an的前n项和为Sn,若S1=1,A.32 B.54 C.7.在空间中,可以确定一个平面的条件是()A.一条直线B.不共线的三个点C.任意的三个点D.两条直线8.已知,复数,若的虚部为1,则()A.2 B.-2 C.1 D.-19.在直角中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在中随机地选取个点,其中有个点正好在扇形里面,则用随机模拟的方法得到的圆周率的近似值为()A. B. C. D.10.边长为1的正方形上有一动点,则向量的范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设x、y满足约束条件,则的取值范围是______.12.计算:______.13.若,且,则__________.14.已知直线分别与x轴、y轴交于A,B两点,则等于________.15.某地甲乙丙三所学校举行高三联考,三所学校参加联考的人数分别为200、300、400。现为了调查联考数学学科的成绩,采用分层抽样的方法在这三所学校中抽取一个样本,已知甲学校中抽取了40名学生的数学成绩,那么在丙学校中抽取的数学成绩人数为_________。16.已知实数,满足不等式组,则的最大值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数,其中向量,.(1)求函数的最小正周期与单调递减区间;(2)在中,、、分别是角、、的对边,已知,,的面积为,求外接圆半径.18.已知等差数列满足,的前项和为.(1)求及;(2)记,求19.已知,,,求.20.在我国古代数学名著《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”.已知三棱维P-ABC中,PA⊥底面ABC.(1)从三棱锥P-ABC中选择合适的两条棱填空_________⊥________,则该三棱锥为“鳖臑”;(2)如图,已知AD⊥PB垂足为D,AE⊥PC,垂足为E,∠ABC=90°.(i)证明:平面ADE⊥平面PAC;(ii)作出平面ADE与平面ABC的交线l,并证明∠EAC是二面角E-l-C的平面角.(在图中体现作图过程不必写出画法)21.如图,在直三棱柱中,,,分别是,,的中点.(1)求证:平面;(2)若,求证:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
甲不输的概率等于甲获胜或者平局的概率相加,计算得到答案.【题目详解】甲不输的概率等于甲获胜或者平局的概率相加甲、乙下成平局的概率为:故答案选A【题目点拨】本题考查了互斥事件的概率,意在考查学生对于概率的理解.2、D【解题分析】
由正弦定理化简已知可得,利用余弦定理,勾股定理,三角形两边之和大于第三边等知识逐一分析各个选项即可得解.【题目详解】解:为非零实数),可得:,由正弦定理,可得:,对于A,时,可得:,可得,即为直角,可得是直角三角形,故正确;对于B,时,可得:,可得为最大角,由余弦定理可得,可得是锐角三角形,故正确;对于C,时,可得:,可得为最大角,由余弦定理可得,可得是钝角三角形,故正确;对于D,时,可得:,可得,这样的三角形不存在,故错误.故选:D.【题目点拨】本题主要考查了正弦定理,余弦定理,勾股定理在解三角形中的应用,考查了分类讨论思想,属于基础题.3、C【解题分析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标代入目标函数即可得解.【题目详解】作出可行域如图,设,联立,则,,当直线经过点时,截距取得最小值,取得最大值.故选:C【题目点拨】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.4、A【解题分析】,所以复数对应的点为,故选A.5、B【解题分析】
利用等差数列的性质,.【题目详解】,解得:.故选B.【题目点拨】本题考查了等比数列的性质,属于基础题型.6、C【解题分析】
利用前n项和Sn的性质可求S【题目详解】设Sna+b=116a+4b=16a+8b,故a=1b=0,故S6【题目点拨】一般地,如果an为等差数列,Sn为其前(1)若m,n,p,q∈N*,m+n=p+q,则am(2)Sn=n(3)Sn=An(4)Sn7、B【解题分析】试题分析:根据平面的基本性质及推论,即确定平面的几何条件,即可知道答案.解:对于A.过一条直线可以有无数个平面,故错;对于C.过共线的三个点可以有无数个平面,故错;对于D.过异面的两条直线不能确定平面,故错;由平面的基本性质及推论知B正确.故选B.考点:平面的基本性质及推论.8、B【解题分析】,所以,。故选B。9、B【解题分析】由题直角中,三条边恰好为三个连续的自然数,设三边为解得以三个顶点为圆心的扇形的面积和为由题故选B.10、A【解题分析】
分类,按在正方形的四条边上分别求解.【题目详解】如图,分别以为建立平面直角坐标系,,设,,∴,当在边或上时,,所以,当在边上时,,,当在边上时,,,∴的取值范围是.故选:A.【题目点拨】本题考查平面向量的数量积,通过建立坐标系,把向量和数量积用坐标表示,使问题简单化.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由约束条件可得可行域,将问题转化为在轴截距取值范围的求解;通过直线平移可确定的最值点,代入点的坐标可求得最值,进而得到取值范围.【题目详解】由约束条件可得可行域如下图阴影部分所示:将的取值范围转化为在轴截距的取值范围问题由平移可知,当过图中两点时,在轴截距取得最大和最小值,,的取值范围为故答案为:【题目点拨】本题考查线性规划中的取值范围问题的求解,关键是能够将问题转化成直线在轴截距的取值范围的求解问题,通过数形结合的方式可求得结果.12、【解题分析】
在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【题目详解】.故答案为:.【题目点拨】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.13、【解题分析】根据三角函数恒等式,将代入得到,又因为,故得到故答案为。14、5【解题分析】
分别求得A,B的坐标,再用两点间的距离公式求解.【题目详解】根据题意令得所以令得所以所以故答案为:5【题目点拨】本题主要考查点坐标的求法和两点间的距离公式,还考查了运算求解的能力,属于基础题.15、80【解题分析】
由题意,求得甲乙丙三所学校抽样比为,再根据甲学校中抽取了40名学生的数学成绩,即可求解丙学校应抽取的人数,得到答案.【题目详解】由题意知,甲乙丙三所学校参加联考的人数分别为200、300、400,所以甲乙丙三所学校抽样比为,又由甲学校中抽取了40名学生的数学成绩,所以在丙学校应抽取人.【题目点拨】本题主要考查了分层抽样概念及其应用,其中解答中熟记分层抽样的概念,以及计算的方法是解答的关键,着重考查了推理与运算能力,属于基础题.16、2【解题分析】
作出不等式组表示的平面区域,根据目标函数的几何意义,结合图象,即可求解,得到答案.【题目详解】由题意,作出不等式组表示的平面区域,如图所示,又由,即表示平面区域内任一点与点之间连线的斜率,显然直线的斜率最大,又由,解得,则,所以的最大值为2.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),的单调递减区间是;(2).【解题分析】试题分析:(1)用坐标表示向量条件,代入函数解析式中,运用向量的坐标运算法则求出函数解析式并应用二倍角公式以及两角和的正弦公式化简函数解析式,由三角函数的性质可求函数的最小正周期及单调递减区间;(2)将条件代入函数解析式可求出角,由三角形面积公式求出边,再由余弦定理求出边,再由正弦定理可求外接圆半径.试题解析:(1)由题意得:.所以,函数的最小正周期为,由得函数的单调递减区间是(2),解得,又的面积为.得.再由余弦定理,解得,即△为直角三角形.考点:1.向量坐标运算;2.三角函数图象与性质;3.正弦定理与余弦定理.18、(1),(2)【解题分析】
(1)利用等差数列的通项公式,结合,可以得到两个关于首项和公差的二元一次方程,解这个方程组即可求出首项和公差,最后利用等差数列的通项公式和前项和公式求出及;(2)利用裂项相消法可以求出.【题目详解】解:(1)设等差数列的公差为d,(2)由(1)知:【题目点拨】本题考查了等差数列的通项公式和前项和公式,考查了裂项相消法求数列前项和,考查了数学运算能力.19、11【解题分析】
根据题设条件,结合三角数的基本关系式,分别求得,和,再利用两角和的正切的公式,进行化简、运算,即可求解.【题目详解】由,由,可得又由,所以,由,得,可得,所以,即.【题目点拨】本题主要考查了两角和与差的正切函数的化简、求值问题,其中解答中熟记两角和与差的正切公式,准确运算是解答的关键,着重考查了推理与运算能力,试题有一定的难度,属于中档试题.20、(1)BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC.(2)(i)见证明;(ii)见解析【解题分析】
(1)根据已知填BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC均可;(2)(i)先证明PC⊥平面ADE,再证明平面ADE⊥平面PAC;(ii)在平面PBC中,记DE∩BC,=F,连结AF,则AF为所求的l.再证明∠EAC是二面角E-l-C的平面角.【题目详解】(1)BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC.(2)(i)在三棱锥P-ABC中,BC⊥AB,BC⊥PA,BC∩PA=A,所以BC⊥平面PAB,又AD⊂平面PAB,所以BC⊥AD,又AD⊥PB,PB∩BC=B,所以AD⊥平面PBC.又PC⊂平面PBC,所以PC⊥AD,因为AE⊥PC且AE∩AD=A,所以PC⊥平面ADE,因为PC⊂平面PAC,所以平面ADE⊥平面PAC.(ii)在平面PBC中,记DE∩BC=F,连结AF,则AF为所求的l.因为PC⊥平面AED,l⊂平面AED,所以PC⊥l,因为PA⊥平面ABC,l⊂平面ABC,所以PA⊥l,又PA∩PC=P,所以l⊥平面PAC.又AE⊂平面PAC且AC⊂平面PAC,所以AE⊥l,AC⊥l.所以∠EAC就是二面角E-l-C的一个平面角.【题目点拨】本题主要考查空间线面位置关系,面面角的作图及证明,属于中档题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度养殖场废弃物综合利用合同书人3篇
- 二零二五年度历史文化景区承包经营权交接合同3篇
- 2025年度渔业养殖与农产品市场拓展合作合同3篇
- 2025年度兼职销售员权益保障与服务合同3篇
- 2024年中国环保通风柜市场调查研究报告
- 2025年度毛石质量争议解决服务合同2篇
- 2025年度混凝土班组施工日志记录合同3篇
- 2025年度架子工分包工程合作协议2篇
- 2024年中国氟塑料合金自吸耐腐泵市场调查研究报告
- 2025年度果园转租经营合同2篇
- 第五单元第四节 全球发展与合作 教学实录-2024-2025学年粤人版地理七年级上册
- 贵州省部分学校2024-2025学年高三年级上册10月联考 化学试卷
- 期末综合试卷(试题)2024-2025学年人教版数学五年级上册(含答案)
- 2024-2025学年上学期武汉小学语文六年级期末模拟试卷
- 2023-2024学年贵州省贵阳外国语实验中学八年级(上)期末数学试卷(含答案)
- 《争做文明班级》课件
- 辽宁省大连市沙河口区2022-2023学年八年级上学期物理期末试卷(含答案)
- 2024年新能源汽车概论考试题库
- 2024年医师定期考核临床类人文医学知识考试题库及答案(共280题)
- 江苏省南通市2024届高三上学期第一次调研测试(一模)生物 含答案
- 2024年四川省内江市中考历史试卷
评论
0/150
提交评论