版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省应县一中2024届高一数学第二学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为等比数列,是它的前项和.若,且与的等差中项为,则()A.31 B.32 C. D.2.如图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是()A. B.C. D.3.若直线与圆相切,则()A. B. C. D.或4.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是()A. B. C. D.5.圆与圆恰有三条公切线,则实数的值是()A.4 B.6 C.16 D.366.已知是圆的一条弦,,则()A. B. C. D.与圆的半径有关7.为了调查老师对微课堂的了解程度,某市拟采用分层抽样的方法从,,三所中学抽取60名教师进行调查,已知,,三所学校中分别有180,270,90名教师,则从学校中应抽取的人数为()A.10 B.12 C.18 D.248.总体由编号为01,02,…,60的60个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第8列和第9列数字开始由左至右选取两个数字,则选出的第5个个体的编号为()5044664429670658036980342718836146422391674325745883110330208353122847736305A.42 B.36 C.22 D.149.已知,且,,这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则()A.7 B.6 C.5 D.910.甲、乙两名运动员分别进行了5次射击训练,成绩如下:甲:7,7,8,8,1;乙:8,9,9,9,1.若甲、乙两名运动员的平均成绩分别用,表示,方差分别用,表示,则()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.若关于的不等式有解,则实数的取值范围为________.12.已知实数满足,则的最小值为_______.13.已知向量,,且,则_______.14.如图,正方体中,的中点为,的中点为,为棱上一点,则异面直线与所成角的大小为__________.15.在中,角、、所对的边为、、,若,,,则角________.16.在数列中,,是其前项和,当时,恒有、、成等比数列,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,解不等式;(2)若,的解集为,求的最小値.18.如图,在三棱锥中,,分别为棱,上的三等份点,,.(1)求证:平面;(2)若,平面,求证:平面平面.19.已知是等差数列的前项和,且,.(1)求通项公式;(2)若,求正整数的值.20.如图,某人在离地面高度为的地方,测得电视塔底的俯角为,塔顶的仰角为,求电视塔的高.(精确到)21.设平面三点、、.(1)试求向量的模;(2)若向量与的夹角为,求;(3)求向量在上的投影.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
根据与的等差中项为,可得到一个等式,和,组成一个方程组,结合等比数列的性质,这个方程组转化为关于和公比的方程组,解这个方程组,求出和公比的值,再利用等比数列前项和公式,求出的值.【题目详解】因为与的等差中项为,所以,因此有,故本题选A.【题目点拨】本题考查了等差中项的性质,等比数列的通项公式以及前项和公式,2、A【解题分析】
根据线性回归模型建立方法,分析选项,找出散点比较分散且无任何规律的选项可得答案.【题目详解】根据题意,适合用线性回归拟合其中两个变量的散点图必须散点分布比较集中,且大体接近某一条直线,分析选项可得A选项的散点图杂乱无章,最不符合条件.故选A【题目点拨】本题考查了统计案例散点图,属于基础题.3、D【解题分析】
本题首先可根据圆的方程确定圆心以及半径,然后根据直线与圆相切即可列出算式并通过计算得出结果。【题目详解】由题意可知,圆方程为,所以圆心坐标为,圆的半径,因为直线与圆相切,所以圆心到直线距离等于半径,即解得或,故选D。【题目点拨】本题考查根据直线与圆相切求参数,考查根据圆的方程确定圆心与半径,若直线与圆相切,则圆心到直线距离等于半径,考查推理能力,是简单题。4、B【解题分析】
利用古典概型概率公式求解即可.【题目详解】设三件正品分别记为,一件次品记为则从三件正品、一件次品中随机取出两件,取出的产品可能为,共6种情况,其中取出的产品全是正品的有3种所以产品全是正品的概率故选:B【题目点拨】本题主要考查了利用古典概型概率公式计算概率,属于基础题.5、C【解题分析】
两圆外切时,有三条公切线.【题目详解】圆标准方程为,∵两圆有三条公切线,∴两圆外切,∴,.故选C.【题目点拨】本题考查圆与圆的位置关系,考查直线与圆的位置关系.两圆的公切线条数:两圆外离时,有4条公切线,两圆外切时,有3条公切线,两圆相交时,有2条公切线,两圆内切时,有1条公切线,两圆内含时,无无公切线.6、C【解题分析】
由数量积的几何意义,利用外心的几何特征计算即可得解.【题目详解】是圆的一条弦,易知在方向上的投影恰好为,所以=||||==2.故选C.【题目点拨】本题考查了数量积的运算,利用定义求解要确定模长及夹角,属于基础题.7、A【解题分析】
按照分层抽样原则,每部分抽取的概率相等,按比例分配给每部分,即可求解.【题目详解】,,三所学校教师总和为540,从中抽取60人,则从学校中应抽取的人数为人.故选:A.【题目点拨】本题考查分层抽样抽取方法,按比例分配是解题的关键,属于基础题.8、C【解题分析】
通过随机数表的相关运算即可得到答案.【题目详解】随机数表第1行的第8列和第9列数字为42,由左至右选取两个数字依次为42,36,03,14,22,选出的第5个个体的编号为22,故选C.【题目点拨】本题主要考查随机数法,按照规则进行即可,难度较小.9、C【解题分析】
由,可得成等比数列,即有=4;讨论成等差数列或成等差数列,运用中项的性质,解方程可得,即可得到所求和.【题目详解】由,可得成等比数列,即有=4,①若成等差数列,可得,②由①②可得,1;若成等差数列,可得,③由①③可得,1.综上可得1.故选:C.【题目点拨】本题考查等差数列和等比数列的中项的性质,考查运算能力,属于中档题.10、D【解题分析】
分别计算出他们的平均数和方差,比较即得解.【题目详解】由题意可得,,,.故,.故选D【题目点拨】本题主要考查平均数和方差的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
利用判别式可求实数的取值范围.【题目详解】不等式有解等价于有解,所以,故或,填.【题目点拨】本题考查一元二次不等式有解问题,属于基础题.12、【解题分析】
实数满足表示点在直线上,可以看作点到原点的距离,最小值是原点到直线的距离,根据点到直线的距离公式求解.【题目详解】因为实数满足=1所以表示直线上点到原点的距离,故的最小值为原点到直线的距离,即,故的最小值为1.【题目点拨】本题考查点到点,点到直线的距离公式,此题的关键在于的最小值所表示的几何意义的识别.13、-2或3【解题分析】
用坐标表示向量,然后根据垂直关系得到坐标运算关系,求出结果.【题目详解】由题意得:或本题正确结果:或【题目点拨】本题考查向量垂直的坐标表示,属于基础题.14、【解题分析】
根据题意得到直线MP运动起来构成平面,可得到面,进而得到结果.【题目详解】取的中点O连接,,根据题意可得到直线MP是一条动直线,当点P变动时直线就构成了平面,因为MO均为线段的中点,故得到,四边形为平行四边形,面,故得到,又面,进而得到.故夹角为.故答案为.【题目点拨】这个题目考查的是异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.15、.【解题分析】
利用余弦定理求出的值,结合角的取值范围得出角的值.【题目详解】由余弦定理得,,,故答案为.【题目点拨】本题考查余弦定理的应用和反三角函数,解题时要充分结合元素类型选择正弦定理和余弦定理解三角形,考查计算能力,属于中等题.16、.【解题分析】
由题意得出,当时,由,代入,化简得出,利用倒数法求出的通项公式,从而得出的表达式,于是可求出的值.【题目详解】当时,由题意可得,即,化简得,得,两边取倒数得,,所以,数列是以为首项,以为公差的等差数列,,,则,因此,,故答案为:.【题目点拨】本题考查数列极限的计算,同时也考查了数列通项的求解,在含的数列递推式中,若作差法不能求通项时,可利用转化为的递推公式求通项,考查分析问题和解决问题的能力,综合性较强,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)最小值为.【解题分析】
(1)由一元二次不等式的解法即可求得结果;(2)由题的根即为,,根据韦达定理可判断,同为正,且,从而利用基本不等式的常数代换求出的最小值.【题目详解】(1)当时,不等式,即为,可得,即不等式的解集为或.(2)由题的根即为,,故,,故,同为正,则,当且仅当,等号成立,所以的最小值为.【题目点拨】本题考查一元二次不等式的解法和基本不等式的知识,考查逻辑推理能力和计算能力,属中档题.18、(1)见证明;(2)见证明【解题分析】
(1)由,,得,进而得即可证明平面.(2)平面得,由,,得,进而证明平面,则平面平面【题目详解】证明:(1)因为,,所以,所以,因为平面,平面,所以平面.(2)因为平面,平面,所以.因为,,所以,又,所以平面.又平面,所以平面平面.【题目点拨】本题考查线面平行的判定,面面垂直的判定,考查空间想象及推理能力,熟记判定定理是关键,是基础题19、(1)(2)41【解题分析】
(1)根据通项公式先求出公差,再求即可;(2)先表示出,求出的具体值,根据求即可【题目详解】(1)由,,可得,则(2),,则,解得【题目点拨】本题考查等差数列通项公式和前项和公式的用法,属于基础题20、【解题分析】
过作的垂线,垂足为,再利用直角三角形与正弦定理求解【题目详解】解:设人的位置为,塔底为,塔顶为,过作的垂线,垂足为,则,,,,所以,答:电视塔的高为约.【题目点拨】本题考查利用正弦定理测量高度,考查基本分析求解能力,属基础题21、(1);(2);(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度建筑工程合同:办公楼装修工程的设计与施工
- 统编人教版六年级语文上册《语文园地四》精美课件
- 2024年度技术转让合同标的的技术改进要求2篇
- 2024年度给水工程分包合同(建筑)3篇
- 劳动合同法的心得体会
- 2024年度版权质押合同:著作权抵押融资具体规定3篇
- 资产抵押合同
- 学校课件-教案包
- 《商务统计素材》课件
- 财务社会实习报告范文
- 业绩对赌协议范文(2024版)
- 宠物医院服务行业市场调研分析报告
- 中国金属门窗行业分类、市场运行态势及产业链全景图谱分析
- 环境治理与利益相关者参与
- 《第6单元 除数是两位数的除法:商是两位数的除法》课件
- 履约管理制度
- 病原微生物与免疫学考试模拟题(含参考答案)
- 新时代大学生如何践行爱国主义精神
- 《济南的冬天-老舍作业设计方案-2023-2024学年初中语文统编版五四学制》
- MOOC 材料科学基础-西安交通大学 中国大学慕课答案
- 甲状舌管囊肿的诊断
评论
0/150
提交评论