版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省佛山市2024届数学高一下期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则下列不等式恒成立的是A. B. C. D.2.如图的折线图为某小区小型超市今年一月份到五月份的营业额和支出数据(利润=营业额-支出),根据折线图,下列说法中正确的是()A.该超市这五个月中,利润随营业额的增长在增长B.该超市这五个月中,利润基本保持不变C.该超市这五个月中,三月份的利润最高D.该超市这五个月中的营业额和支出呈正相关3.平行四边形中,M为的中点,若.则=()A. B.2 C. D.4.我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:“现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤”,若该金锤从头到尾,每一尺的重量构成等差数列,该金锤共重多少斤?()A.6斤 B.7斤 C.9斤 D.15斤5.在△ABC中,角A、B、C所对的边分别为,己知A=60°,,则B=()A.45° B.135° C.45°或135° D.以上都不对6.设是公比为的无穷等比数列,若的前四项之和等于第五项起以后所有项之和,则数列是()A.公比为的等比数列B.公比为的等比数列C.公比为或的等比数列D.公比为或的等比数列7.阅读如图所示的程序,若运该程序输出的值为100,则的面的条件应该是()A. B. C. D.8.已知,且,那么a,b,,的大小关系是()A. B.C. D.9.已知数列是等差数列,数列满足,的前项和用表示,若满足,则当取得最大值时,的值为()A.16 B.15 C.14 D.1310.一个长方体共一顶点的三条棱长分别是,这个长方体它的八个顶点都在同一个球面上,这个球的表面积是()A.12π B.18π C.36π D.6π二、填空题:本大题共6小题,每小题5分,共30分。11.在正方体中,是棱的中点,则异面直线与所成角的余弦值为__________.12.已知数列中,其前项和为,,则_____.13.若,则_______.14.数列的前项和为,若数列的各项按如下规律排列:,,,,,,,,,,…,,,…,,…有如下运算和结论:①;②数列,,,,…是等比数列;③数列,,,,…的前项和为;④若存在正整数,使,,则.其中正确的结论是_____.(将你认为正确的结论序号都填上)15.中,若,,,则的面积______.16.每年五月最受七中学子期待的学生活动莫过于学生节,在每届学生节活动中,着七中校服的布偶“七中熊”尤其受同学和老师欢迎.已知学生会将在学生节当天售卖“七中熊”,并且会将所获得利润全部捐献于公益组织.为了让更多同学知晓,学生会宣传部需要前期在学校张贴海报宣传,成本为250元,并且当学生会向厂家订制只“七中熊”时,需另投入成本,(元),.通过市场分析,学生会订制的“七中熊”能全部售完.若学生节当天,每只“七中熊”售价为70元,则当销量为______只时,学生会向公益组织所捐献的金额会最大.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校全体教师年龄的频率分布表如表1所示,其中男教师年龄的频率分布直方图如图2所示.已知该校年龄在岁以下的教师中,男女教师的人数相等.表1:(1)求图2中的值;(2)若按性别分层抽样,随机抽取16人参加技能比赛活动,求男女教师抽取的人数;(3)若从年龄在的教师中随机抽取2人,参加重阳节活动,求至少有1名女教师的概率.18.已知函数,的部分图像如图所示,点,,都在的图象上.(1)求的解析式;(2)当时,恒成立,求的取值范围.19.如图,在四棱锥中,底面为矩形,为等边三角形,且平面平面.为的中点,为的中点,过点,,的平面交于.(1)求证:平面;(2)若时,求二面角的余弦值.20.为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同.若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度与时间t满足关系式:,若使用口服方式给药,则药物在白鼠血液内的浓度与时间t满足关系式:现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围.21.如图,在三棱柱中,侧面是边长为2的正方形,点是棱的中点.(1)证明:平面.(2)若三棱锥的体积为4,求点到平面的距离.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】∵∴设代入可知均不正确对于,根据幂函数的性质即可判断正确故选D2、D【解题分析】
根据折线图,分析出超市五个月中利润的情况以及营业额和支出的相关性.【题目详解】对于A选项,五个月的利润依次为:,其中四月比三月是下降的,故A选项错误.对于B选项,五月的月份是一月和四月的两倍,说明利润有比较大的波动,故B选项错误.对于C选项,五个月的利润依次为:,所以五月的利润最高,故C选项错误.对于D选项,根据图像可知,超市这五个月中的营业额和支出呈正相关,故D选项正确.故选:D【题目点拨】本小题主要考查折线图的分析与理解,属于基础题.3、A【解题分析】
先求出,再根据得到解方程组即得解.【题目详解】由题意得,又因为,所以,由题意得,所以解得所以,故选A.【题目点拨】本题主要考查平面向量的运算法则,意在考查学生对这些知识的理解掌握水平,属于基础题.4、D【解题分析】
直接利用等差数列的求和公式求解即可.【题目详解】因为每一尺的重量构成等差数列,,,,数列的前5项和为.即金锤共重15斤,故选D.【题目点拨】本题主要考查等差数列求和公式的应用,意在考查运用所学知识解答实际问题的能力,属于基础题.5、A【解题分析】
利用正弦定理求出的值,再结合,得出,从而可得出的值。【题目详解】由正弦定理得,,,则,所以,,故选:A。【题目点拨】本题考查利用正弦定理解三角形,要注意正弦定理所适用的基本情形,同时在求得角时,利用大边对大角定理或两角之和不超过得出合适的答案,考查计算能力,属于中等题。6、B【解题分析】
根据题意可得,带入等比数列前和即可解决。【题目详解】根据题意,若的前四项之和等于第五项起以后所有项之和,则,又由是公比为的无穷等比数列,则,变形可得,则,数列为的奇数项组成的数列,则数列为公比为的等比数列;故选:B.【题目点拨】本题主要考查了利用等比数列前项和计算公比,属于基础题。7、D【解题分析】
根据输出值和代码,可得输出的最高项的值,进而结合当型循环结构的特征得判断框内容.【题目详解】根据循环体,可知因为输出的值为100,所以由等差数列求和公式可知求和到19停止,结合当型循环结构特征,可知满足条件时返回执行循环体,因而判断框内的内容为,故选:D.【题目点拨】本题考查了当型循环结构的代码应用,根据输出值选择条件,属于基础题.8、D【解题分析】
直接用作差法比较它们的大小得解.【题目详解】;;.故.故选:D【题目点拨】本题主要考查了作差法比较实数的大小,意在考查学生对这些知识的理解掌握水平,属于基础题.9、A【解题分析】
设等差数列的公差为,根据得到,推出,判断出当时,;时,;再根据,判断出对取正负的影响,进而可得出结果.【题目详解】设等差数列的公差为,因为数列是等差数列,,所以,因此,所以,所以,,因此,当时,;时,,因为,所以当时,,当时,,当时,,当时,因为,所以;因为所以,当时,取得最大值.故选:A【题目点拨】本题主要考查等差数列的应用,熟记等差数列的性质,及其函数特征即可,属于常考题型.10、A【解题分析】
先求长方体的对角线的长度,就是球的直径,然后求出它的表面积.【题目详解】长方体的体对角线的长是,所以球的半径是:,所以该球的表面积是,故选A.【题目点拨】该题考查的是有关长方体的外接球的表面积问题,在解题的过程中,首先要明确长方体的外接球的球心应在长方体的中心处,即长方体的体对角线是其外接球的直径,从而求得结果.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
假设正方体棱长,根据//,得到异面直线与所成角,计算,可得结果.【题目详解】假设正方体棱长为1,因为//,所以异面直线与所成角即与所成角则角为如图,所以故答案为:【题目点拨】本题考查异面直线所成的角,属基础题.12、1【解题分析】
本题主要考查了已知数列的通项式求前和,根据题目分奇数项和偶数项直接求即可。【题目详解】,则.故答案为:1.【题目点拨】本题主要考查了给出数列的通项式求前项和以及极限。求数列的前常用的方法有错位相减、分组求和、裂项相消等。本题主要利用了分组求和的方法。属于基础题。13、【解题分析】
对两边平方整理即可得解.【题目详解】由可得:,整理得:所以【题目点拨】本题主要考查了同角三角函数基本关系及二倍角的正弦公式,考查观察能力及转化能力,属于较易题.14、①③④【解题分析】
根据题中所给的条件,将数列的项逐个写出,可以求得,将数列的各项求出,可以发现其为等差数列,故不是等比数列,利用求和公式求得结果,结合条件,去挖掘条件,最后得到正确的结果.【题目详解】对于①,前24项构成的数列是,所以,故①正确;对于②,数列是,可知其为等差数列,不是等比数列,故②不正确;对于③,由上边结论可知是以为首项,以为公比的等比数列,所以有,故③正确;对于④,由③知,即,解得,且,故④正确;故答案是①③④.【题目点拨】该题考查的是有关数列的性质以及对应量的运算,解题的思想是观察数列的通项公式,理解项与和的关系,认真分析,仔细求解,从而求得结果.15、【解题分析】
利用三角形的面积公式可求出的面积的值.【题目详解】由三角形的面积公式可得.故答案为:.【题目点拨】本题考查三角形面积的计算,熟练利用三角形的面积公式是计算的关键,考查计算能力,属于基础题.16、200【解题分析】
由题意求得学生会向公益组织所捐献的金额的函数解析式,再由对勾函数的性质求得取最大值时的值即可.【题目详解】由题意,设学生会向公益组织所捐献的金额为,,由对勾函数的性质知,在时取得最小值,所以时,取得最大值.故答案为:200【题目点拨】本题主要考查利用函数解决实际问题和对勾函数的性质,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析;(3)【解题分析】
由男教师年龄的频率分布直方图总面积为1求得答案;由男教师年龄在的频率可计算出男教师人数,从而女教师人数也可求得,于是通过分层抽样的比例关系即可得到答案;年龄在的教师中,男教师为(人),则女教师为1人,从而可计算出基本事件的概率.【题目详解】(1)由男教师年龄的频率分布直方图得解得(2)该校年龄在岁以下的男女教师人数相等,且共14人,年龄在岁以下的男教师共7人由(1)知,男教师年龄在的频率为男教师共有(人),女教师共有(人)按性别分层抽样,随机抽取16人参加技能比赛活动,则男教师抽取的人数为(人),女教师抽取的人数为人(3)年龄在的教师中,男教师为(人),则女教师为1人从年龄在的教师中随机抽取2人,共有10种可能情形其中至少有1名女教师的有4种情形故所求概率为【题目点拨】本题主要考查频率分布直方图,分层抽样,古典概率的计算,意在考查学生的计算能力和分析能力,难度不大.18、(1);(2)【解题分析】
(1)由三角函数图像,求出即可;(2)求出函数的值域,再列不等式组求解即可.【题目详解】解:(1)由的图象可知,则,因为,,所以,故.因为在函数的图象上,所以,所以,即,因为,所以.因为点在函数的图象上,所以,解得,故.(2)因为,所以,所以,则.因为,所以,所以,解得.故的取值范围为.【题目点拨】本题考查了利用三角函数图像求解析式,重点考查了三角函数值域的求法,属中档题.19、(1)证明见解析;(2)【解题分析】
(1)首先证明平面,由平面平面,可说明,由此可得四边形为平行四边形,即可证明平面;(2)延长交于点,过点作交直线于点,则即为二面角的平面角,求出的余弦值即可得到答案.【题目详解】(1)∵为矩形∴,平面,平面∴平面.又因为平面平面,∴.为中点,为中点,所以平行且等于,即四边形为平行四边形所以,平面,平面所以平面(2)不妨设,.因为为中点,为等边三角形,所以,,且∵,所以有平面,故因为平面平面∴平面,又,∴平面,则延长交于点,过点作交直线于点,由于平行且等于,所以为中点,,由于,,,所以平面,则,所以即为二面角的平面角在中,,,所以,所以.【题目点拨】本题考查线面平行的证明,以及二面角的余弦值的求法,考查学生空间想象能力,计算能力,由一定综合性.20、(1)见解析;(2)0.【解题分析】
(1)药物在白鼠血液内的浓度y与时间t的关系为:当a=1时,y=y1+y2;①当0<t<1时,y=﹣t4=﹣()2,所以ymax=f();②当1≤t≤3时,∵,所以ymax=7﹣2(当t时取到),因为,故ymax=f().(2)由题意y①⇒⇒,又0<t<1,得出a≤1;②⇒⇒由于1≤t≤3得到,令,则,所以,综上得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《光电信息科学与工程专业毕业设计》课程教学大纲
- 2024年出售铝型材设备合同范本
- 2024年代理采购板材合同范本
- 2024年便利店酒水采购合同范本
- 医疗废物标准操作流程
- ICU口腔护理课件
- 原发性肝癌治疗方法
- 2024至2030年中国宽式交叉线导辊数据监测研究报告
- 2024至2030年中国铁艺阳台围栏行业投资前景及策略咨询研究报告
- 2024年芝士片项目综合评估报告
- 难点详解人教版九年级化学上册第一单元走进化学世界专题训练练习题(含答案详解版)
- 财务管理委托代理会计服务 投标文件(技术方案)
- 七年级数学人教版(上册)第9课时 分段计费问题
- 2024年秋新北师大版七年级上册数学教学课件 6.1 丰富的数据世界
- T-CCSAS014-2022《化工企业承包商安全管理指南》
- 中小学十五五发展规划(2025-2030)
- 语文园地四 写话 学写留言条(教学设计)统编版语文二年级上册
- 八年级下册 第六单元 23《马说》公开课一等奖创新教学设计
- 理智与情感:爱情的心理文化之旅智慧树知到期末考试答案章节答案2024年昆明理工大学
- 期末模拟考试03-【中职专用】《心理健康与职业生涯》(高教版2023·基础模块)(含答案)
- GB 20052-2024电力变压器能效限定值及能效等级
评论
0/150
提交评论