2024届四川省眉山一中数学高一下期末达标测试试题含解析_第1页
2024届四川省眉山一中数学高一下期末达标测试试题含解析_第2页
2024届四川省眉山一中数学高一下期末达标测试试题含解析_第3页
2024届四川省眉山一中数学高一下期末达标测试试题含解析_第4页
2024届四川省眉山一中数学高一下期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省眉山一中数学高一下期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为直线,,为两个不同的平面,则下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则2.在锐角中,内角,,的对边分别为,,,若,则等于()A. B. C. D.3.已知集合,,则()A. B. C. D.4.在中,,是的内心,若,其中,动点的轨迹所覆盖的面积为()A. B. C. D.5.设是两条不同的直线,是两个不同的平面,则下列命题中正确的是()A.若,则B.若,则C.若,则D.若,则6.已知数列是等比数列,若,且公比,则实数的取值范围是()A. B. C. D.7.已知点是所在平面内的一定点,是平面内一动点,若,则点的轨迹一定经过的()A.重心 B.垂心 C.内心 D.外心8.某程序框图如图所示,若输出的,则判断框内应填()A. B. C. D.9.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为()A. B.C. D.10.如图,某人在点处测得某塔在南偏西的方向上,塔顶仰角为,此人沿正南方向前进30米到达处,测得塔顶的仰角为,则塔高为()A.20米 B.15米 C.12米 D.10米二、填空题:本大题共6小题,每小题5分,共30分。11.把数列的各项排成如图所示三角形状,记表示第m行、第n个数的位置,则在图中的位置可记为____________.12.设数列是等差数列,,,则此数列前20项和等于______.13.已知为等差数列,,,,则______.14.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则直线不经过第一象限的概率为__________.15.已知,则的最小值是__________.16.若数列的前4项分别是,则它的一个通项公式是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列{}中,=3,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+S2=12,.(1)求与的通项公式;(2)设数列{}满足,求{}的前n项和.18.已知.(1)化简;(2)若,且为第一象限角,求的值.19.如图,四棱锥P-ABCD中,底面ABCD,,,,M为线段AD上一点,,N为PC的中点.(1)证明:平面PAB;(2)求直线AN与平面PMN所成角的余弦值.20.已知是同一平面内的三个向量,;(1)若,且,求的坐标;(2)若,且与垂直,求与的夹角.21.已知三角形ABC的顶点为,,,M为AB的中点.(1)求CM所在直线的方程;(2)求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

利用直线与平面平行、垂直的判断即可。【题目详解】对于A.若,,则或,所以A错对于B.若,,则,应该为,所以B错对于D.若,,则或,所以D错。所以选择C【题目点拨】本题主要考查了直线与平面垂直和直线与平面平行的性质。属于基础题。2、D【解题分析】

由正弦定理将边化角可求得,根据三角形为锐角三角形可求得.【题目详解】由正弦定理得:,即故选:【题目点拨】本题考查正弦定理边化角的应用问题,属于基础题.3、A【解题分析】

先分别求出集合,,由此能求出.【题目详解】集合,,1,,或,,,.故选:.【题目点拨】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4、A【解题分析】

由且,易知动点的轨迹为以为邻边的平行四边形的内部(含边界),在中,由,利用余弦定理求得边,再由和,求得内切圆的半径,从而得到,再由动点的轨迹所覆盖的面积得解.【题目详解】因为且,根据向量加法的平行四边形运算法则,所以动点的轨迹为以为邻边的平行四边形的内部(含边界),因为在中,,所以由余弦定理得:,所以,即,解得:,,所以.设的内切圆的半径为,所以所以.所以.所以动点的轨迹所覆盖的面积为:.故选:A【题目点拨】本题主要考查了动点轨迹所覆盖的面积的求及正弦定理,余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.5、D【解题分析】

根据线线、线面和面面平行和垂直有关定理,对选项逐一分析,由此得出正确选项.【题目详解】对于A选项,两个平面垂直,一个平面内的直线不一定垂直另一个平面内的直线,故A选项错误.对于B选项,两个平面平行,一个平面内的直线和另一个平面内的直线不一定平行,故B选项错误.对于C选项,两条直线都跟同一个平面平行,它们可能相交、异面或者平行,故C选项错误.对于D选项,根据平行的传递性以及面面垂直的判定定理可知,D选项命题正确.综上所述,本小题选D.【题目点拨】本小题主要考查空间线线、线面和面面平行和垂直有关定理的运用,考查逻辑推理能力,属于基础题.6、C【解题分析】

由可得,结合可得结果.【题目详解】,,,,,,故选C.【题目点拨】本题主要考查等比数列的通项公式,意在考查对基础知识的掌握与应用,属于基础题.7、A【解题分析】

设D是BC的中点,由,,知,所以点P的轨迹是射线AD,故点P的轨迹一定经过△ABC的重心.【题目详解】如图,设D是BC的中点,∵,,∴,即∴点P的轨迹是射线AD,∵AD是△ABC中BC边上的中线,∴点P的轨迹一定经过△ABC的重心.故选:A.【题目点拨】本题考查三角形五心的应用,是基础题.解题时要认真审题,仔细解答.8、A【解题分析】

根据程序框图的结构及输出结果,逆向推断即可得判断框中的内容.【题目详解】由程序框图可知,,则所以此时输出的值,因而时退出循环.因而判断框的内容为故选:A【题目点拨】本题考查了根据程序框图的输出值,确定判断框的内容,属于基础题.9、A【解题分析】

由题意利用函数的图象变换法则,即可得出结论。【题目详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选.【题目点拨】本题主要考查函数的图象变换法则,注意对的影响。10、B【解题分析】

设塔底为,塔高为,根据已知条件求得以及角,利用余弦定理列方程,解方程求得塔高的值.【题目详解】设塔底为,塔高为,故,由于,所以在三角形中,由余弦定理得,解得米.故选B.【题目点拨】本小题主要考查利用余弦定理解三角形,考查空间想象能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

利用第m行共有个数,前m行共有个数,得的位置即可求解【题目详解】因为第m行共有个数,前m行共有个数,所以应该在第11行倒数第二个数,所以的位置为.故答案为:【题目点拨】本题考查等差数列的通项和求和公式,发现每行个数成等差是关键,是基础题12、180【解题分析】

根据条件解得公差与首项,再代入等差数列求和公式得结果【题目详解】因为,,所以,【题目点拨】本题考查等差数列通项公式以及求和公式,考查基本分析求解能力,属基础题13、【解题分析】

由等差数列的前项和公式,代入计算即可.【题目详解】已知为等差数列,且,,所以,解得或(舍)故答案为【题目点拨】本题考查了等差数列前项和公式的应用,属于基础题.14、【解题分析】

首先求出试验发生包含的事件的取值所有可能的结果,满足条件事件直线不经过第一象限,符合条件的有种结果,根据古典概型概率公式得到结果.【题目详解】试验发生包含的事件,,得到的取值所有可能的结果有:共种结果,由得,当时,直线不经过第一象限,符合条件的有种结果,所以直线不经过第一象限的概率.故答案为:【题目点拨】本题是一道古典概型题目,考查了古典概型概率公式,解题的关键是求出列举基本事件,属于基础题.15、【解题分析】分析:利用题设中的等式,把的表达式转化成,展开后,利用基本不等式求得y的最小值.详解:因为,所以,所以(当且仅当时等号成立),则的最小值是,总上所述,答案为.点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.16、【解题分析】

根据等比数列的定义即可判断出该数列是以为首项,为公比的等比数列,根据等比数列的通项公式即可写出该数列的一个通项公式.【题目详解】解:∵,该数列是以为首项,为公比的等比数列,该数列的通项公式是:,故答案为:.【题目点拨】本题主要考查等比数列的定义以及等比数列的通项公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】

(1)根据等差数列{}中,=1,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+S2=12,,设出基本元素,得到其通项公式;(2)由于,所以,那么利用裂项求和可以得到结论.【题目详解】(1)设:{}的公差为,因为,所以,解得=1或=-4(舍),=1.故,;(2)因为故.本题主要是考查了等差数列和等比数列的通项公式和前n项和,以及数列求和的综合运用.18、(1)(2)【解题分析】

(1)由条件利用诱导公式进行化简所给的式子,即可求得答案;(2)由题意应用诱导公式,同角三角函数的基本关系求得的值,可得的值,即可求得答案.【题目详解】(1)(2)①又②解得:为第一象限角【题目点拨】本题主要考查了三角函数化简求值问题,解题关键是熟练使用诱导公式和同名三角函数求值的解法,考查了分析能力和计算能力,属于中档题.19、(1)证明见解析;(2)【解题分析】

(1)如图所示,为中点,连接,证明为平行四边形得到答案.(2)分别以为轴建立直角坐标系,平面的法向量为,计算向量夹角得到答案.【题目详解】(1)如图所示,为中点,连接.为中点,N为PC的中点,故,,,故,且,故为平行四边形.故,平面,故平面PAB.(2)中点为,,故,故,底面ABCD,故,.分别以为轴建立直角坐标系,则,,,,.设平面的法向量为,则,即,取得到,故,故直线AN与平面PMN所成角的余弦值为.【题目点拨】本题考查了线面平行,线面夹角,意在考查学生的空间想象能力和计算能力.20、(1)或;(2).【解题分析】

(1)设向量,根据和得到关于的方程组,从而得到答案;(2)根据与垂直,得到的值,根据向量夹角公式得到的值,从而得到的值.【题目详解】(1)设向量,因为,,,所以,解得,或所以或;(2)因为与垂直,所以,所以而,,所以,得,与的夹角为,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论