2024届山东省栖霞市高一数学第二学期期末经典模拟试题含解析_第1页
2024届山东省栖霞市高一数学第二学期期末经典模拟试题含解析_第2页
2024届山东省栖霞市高一数学第二学期期末经典模拟试题含解析_第3页
2024届山东省栖霞市高一数学第二学期期末经典模拟试题含解析_第4页
2024届山东省栖霞市高一数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省栖霞市高一数学第二学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角,,所对的边分别是,,,,,,则()A.或 B.C. D.2.已知等差数列:1,a1,a2,9;等比数列:-9,b1,b2,b3,-1.则b2(a2-a1)的值为()A.8 B.-8C.±8 D.83.在中,角所对的边分别为,若,,,则等于()A.4 B. C. D.4.设,过定点的动直线和过定点的动直线交于点,则的最大值是()A. B. C. D.5.在中,角的对边分别为,,且边,则面积的最大值为()A. B. C. D.6.若实数x,y满足,则z=x+y的最小值为()A.2 B.3 C.4 D.57.如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则()A.,且直线是相交直线B.,且直线是相交直线C.,且直线是异面直线D.,且直线是异面直线8.已知为第Ⅱ象限角,则的值为()A. B. C. D.9.已知圆:及直线:,当直线被截得的弦长为时,则等于()A. B. C. D.10.在正方体中,直线与直线所成角是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为________.12.已知数列:,,,,,,,,,,,,,,,,,则__________.13.求374与238的最大公约数结果用5进制表示为_________.14.已知等边三角形的边长为2,点P在边上,点Q在边的延长线上,若,则的最小值为______.15.求的值为________.16.在△ABC中,若,则△ABC的形状是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(Ⅰ)化简;(Ⅱ)已知,求的值.18.已知点.(1)求中边上的高所在直线的方程;(2)求过三点的圆的方程.19.在海上进行工程建设时,一般需要在工地某处设置警戒水域;现有一海上作业工地记为点,在一个特定时段内,以点为中心的1海里以内海域被设为警戒水域,点正北海里处有一个雷达观测站,某时刻测得一艘匀速直线行驶的船只位于点北偏东且与点相距10海里的位置,经过12分钟又测得该船已行驶到点北偏东且与点相距海里的位置.(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.试判断它是否会进入警戒水域(点与船的距离小于1海里即为进入警戒水域),并说明理由.20.已知.(1)解关于的不等式;(2)若不等式的解集为,求实数,的值.21.已知,.(Ⅰ)求,的值;(Ⅱ)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

将已知代入正弦定理可得,根据,由三角形中大边对大角可得:,即可求得.【题目详解】解:,,由正弦定理得:故选C.【题目点拨】本题考查了正弦定理、三角形的边角大小关系,考查了推理能力与计算能力.2、B【解题分析】a2-a1=d=9-13又b22=b1b因为b2与-9,-1同号,所以b2=-3.所以b2(a2-a1)=-3×8本题选择B选项.3、B【解题分析】

根据正弦定理,代入数据即可。【题目详解】由正弦定理,得:,即,即:解得:选B。【题目点拨】此题考查正弦定理:,代入数据即可,属于基础题目。4、A【解题分析】

由题意知两直线互相垂直,根据直线分别求出定点与定点,再利用基本不等式,即可得出答案。【题目详解】直线过定点,直线过定点,又因直线与直线互相垂直,即即,当且仅当时取等号故选A【题目点拨】本题考查直线位置关系,考查基本不等式,属于中档题。5、D【解题分析】

由已知利用同角三角函数基本关系式可求,根据余弦定理,基本不等式可求的最大值,进而利用三角形面积公式即可求解.【题目详解】解:,可解得:,由余弦定理,可得,即,当且仅当时成立.等号当时成立.故选D.【题目点拨】本题主要考查了余弦定理,三角形面积公式的应用,属于基本知识的考查.6、D【解题分析】

由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【题目详解】由实数,满足作出可行域,如图:联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,此时有最小值为.故选:D.【题目点拨】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.7、B【解题分析】

利用垂直关系,再结合勾股定理进而解决问题.【题目详解】如图所示,作于,连接,过作于.连,平面平面.平面,平面,平面,与均为直角三角形.设正方形边长为2,易知,.,故选B.【题目点拨】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角性.8、B【解题分析】

首先由,解出,求出,再利用二倍角公式以及所在位置,即可求出.【题目详解】因为,所以或,又为第Ⅱ象限角,故,.因为为第Ⅱ象限角即,所以,,即为第Ⅰ,Ⅲ象限角.由于,解得,故选B.【题目点拨】本题主要考查二倍角公式的应用以及象限角的集合应用.9、C【解题分析】

求出圆心到直线的距离,由垂径定理计算弦长可解得.【题目详解】由题意,圆心为,半径为2,圆心到直线的距离为,所以,解得.故选:C.【题目点拨】本题考查直线与圆相交弦长问题,解题方法由垂径定理得垂直,由勾股定理列式计算.10、B【解题分析】

直线与直线所成角为,为等边三角形,得到答案.【题目详解】如图所示:连接易知:直线与直线所成角为为等边三角形,夹角为故答案选B【题目点拨】本题考查了异面直线夹角,意在考查学生的空间想象能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

利用反三角函数的单调性即可求解.【题目详解】函数是定义在上的增函数,函数在区间上单调递增,,,函数的值域是.故答案为:【题目点拨】本题考查了反三角函数的单调性以及反三角函数值,属于基础题.12、【解题分析】

根据数列的规律和可知的取值为,则分母为;又为分母为的项中的第项,则分子为,从而得到结果.【题目详解】当时,;当时,的分母为:又的分子为:本题正确结果:【题目点拨】本题考查根据数列的规律求解数列中的项,关键是能够根据分子的变化特点确定的取值.13、【解题分析】

根据最大公约数的公式可求得两个数的最大公约数,再由除取余法即可将进制进行转换.【题目详解】374与238的最大公约数求法如下:,,,,所以两个数的最大公约数为34.由除取余法可得:所以将34化为5进制后为,故答案为:.【题目点拨】本题考查了最大公约数的求法,除取余法进行进制转化的应用,属于基础题.14、【解题分析】

以为轴建立平面直角坐标系,设,用t表示,求其最小值即可得到本题答案.【题目详解】过点A作BC的垂线,垂足为O,以为轴建立平面直角坐标系.作PM垂直BC交于点M,QH垂直y轴交于点H,CN垂直HQ交于点N.设,则,故有所以,,当时,取最小值.故答案为:【题目点拨】本题主要考查利用建立平面直角坐标系解决向量的取值范围问题.15、44.5【解题分析】

通过诱导公式,得出,依此类推,得出原式的值.【题目详解】,,同理,,故答案为44.5.【题目点拨】本题主要考查了三角函数中的诱导公式的运用,得出是解题的关键,属于基础题.16、钝角三角形【解题分析】

由,结合正弦定理可得,,由余弦定理可得可判断的取值范围【题目详解】解:,由正弦定理可得,由余弦定理可得是钝角三角形故答案为钝角三角形.【题目点拨】本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)-2。【解题分析】试题分析:(Ⅰ)5分(Ⅱ)10分考点:三角函数化简求值点评:三角函数化简主要考察的是诱导公式,如等,本题难度不大,需要学生熟记公式18、(1);(2)【解题分析】

(1)边上的高所在直线方程斜率与边所在直线的方程斜率之积为-1,可求出高所在直线的斜率,代入即可求出高所在直线的方程。(2)设圆的一般方程为,代入即可求得圆的方程。【题目详解】(1)因为所在直线的斜率为,所以边上的高所在直线的斜率为所以边上的高所在直线的方程为,即(2)设所求圆的方程为因为在所求的圆上,故有所以所求圆的方程为【题目点拨】(1)求直线方程一般通过直线点斜式方程求解,即知道点和斜率。(2)圆的一般方程为,三个未知数三个点代入即可。19、(1)海里/小时;(2)该船不改变航行方向则会进入警戒水域,理由见解析.【解题分析】

(1)建立直角坐标系,首先求出位置与位置的距离,然后除以经过的时间即可求出船的航行速度;(2)求出位置与位置所在直线方程,求出位置与直线的距离与1海里对比即可.【题目详解】(1)如图建立平面直角坐标系:设一个单位长度为1海里,则坐标中,,,,再由方位角可求得:,,所以,又因为12分钟=0.2小时,则(海里/小时),所以该船行驶的速度为海里/小时;(2)直线的斜率为,所以直线的方程为:,即,所以点到直线的距离为,即该船不改变航行方向行驶时离点的距离小于1海里,所以若该船不改变航行方向则会进入警戒水域.【题目点拨】本题主要考查了直角坐标系中两点间距离的计算,直线与圆的位置关系,属于一般题.20、(1);(2)或.【解题分析】

(1),再解一元二次不等式即可;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论