版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省嘉峪关市2024届高一数学第二学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆,过点作圆的最长弦和最短弦,则直线,的斜率之和为A. B. C.1 D.2.已知变量x与y负相关,且由观测数据算得样本平均数=1.5,=5,则由该观测数据算得的线性回归方程可能是()A. B.C. D.3.的值等于()A. B. C. D.4.下列结论中错误的是()A.若,则 B.函数的最小值为2C.函数的最小值为2 D.若,则函数5.在复平面内,复数满足,则的共轭复数对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限6.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数(首项)按照上述规则施行变换后的第6项为1(注:1可以多次出现),则的所有不同值的个数为()A.3 B.4 C.5 D.327.如图是函数一个周期的图象,则的值等于A. B. C. D.8.如图,在正方体中,,分别是中点,则异面直线与所成角大小为().A. B. C. D.9.已知等差数列中,若,则取最小值时的()A.9 B.8 C.7 D.610.已知向量,满足,,,则()A.3 B.2 C.1 D.0二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.12.在数列中,,当时,.则数列的前项和是_____.13.函数在的值域是______________.14.已知,则____________________________.15.在数列中,,则___________.16.在中,内角A,B,C所对的边分别为a,b,c,若,,b=1,则_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知平面平行于三棱锥的底面,等边所在的平面与底面垂直,且,设(1)求证:且;(2)求二面角的余弦值.18.如图,矩形所在平面与以为直径的圆所在平面垂直,为中点,是圆周上一点,且,,.(1)求异面直线与所成角的余弦值;(2)设点是线段上的点,且满足,若直线平面,求实数的值.19.已知函数(1)求函数的最小正周期;(2)若,且,求的值.20.某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利a元的前提下,可卖出b件;若做广告宣传,广告费为n千元比广告费为千元时多卖出件。(1)试写出销售量与n的函数关系式;(2)当时,厂家应该生产多少件产品,做几千元的广告,才能获利最大?21.已知(Ⅰ)求的值;(Ⅱ)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
根据圆的几何性质可得最长弦是直径,最短弦和直径垂直,故可计算斜率,并求和.【题目详解】由题意得,直线经过点和圆的圆心弦长最长,则直线的斜率为,由题意可得直线与直线互相垂直时弦长最短,则直线的斜率为,故直线,的斜率之和为.【题目点拨】本题考查了两直线垂直的斜率关系,以及圆内部的几何性质,属于简单题型.2、A【解题分析】
先由变量负相关,可排除D;再由回归直线过样本中心,即可得出结果.【题目详解】因为变量x与y负相关,所以排除D;又回归直线过样本中心,A选项,过点,所以A正确;B选项,不过点,所以B不正确;C选项,不过点,所以C不正确;故选A【题目点拨】本题主要考查线性回归直线,熟记回归直线的意义即可,属于常考题型.3、D【解题分析】
利用诱导公式先化简,再利用差角的余弦公式化简得解.【题目详解】由题得原式=.故选D【题目点拨】本题主要考查诱导公式和差角的余弦公式化简求值,意在考查学生对这些知识的理解掌握水平,属于基础题.4、B【解题分析】
根据均值不等式成立的条件逐项分析即可.【题目详解】对于A,由知,,所以,故选项A本身正确;对于B,,但由于在时不可能成立,所以不等式中的“”实际上取不到,故选项B本身错误;对于C,因为,当且仅当,即时,等号成立,故选项C本身正确;对于D,由知,,所以lnx+=-2,故选项D本身正确.故选B.【题目点拨】本题主要考查了均值不等式及不等式取等号的条件,属于中档题.5、A【解题分析】
把已知等式变形,利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【题目详解】由z(1﹣i)=2,得z=,∴.则z的共轭复数对应的点的坐标为(1,﹣1),位于第四象限.故选D.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.6、A【解题分析】
由题意:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),我们可以从第六项为1出发,逐项求出各项的取值,可得的所有不同值的个数.【题目详解】解:由题意:如果对正整数(首项)按照上述规则施行变换后的第6项为1,则变换中的第5项一定是2,变换中的第4项一定是4,变换中的第3项可能是1,也可能是8,变换中的第2项可能是2,也可能是16,则的可能是4,也可能是5,也可能是32,故的所有可能的取值为,故选:A.【题目点拨】本题主要考查数列的应用及简单的逻辑推理,属于中档题.7、A【解题分析】
利用图象得到振幅,周期,所以,再由图象关于成中心对称,把原式等价于求的值.【题目详解】由图象得:振幅,周期,所以,所以,因为图象关于成中心对称,所以,,所以原式,故选A.【题目点拨】本题考查三角函数的周期性、对称性等性质,如果算出每个值再相加,会浪费较多时间,且容易出错,采用对称性求解,能使问题的求解过程变得更简洁.8、C【解题分析】
通过中位线定理可以得到在正方体中,可以得到所以这样找到异面直线与所成角,通过计算求解.【题目详解】分别是中点,所以有而,因此异面直线与所成角为在正方体中,,所以,故本题选C.【题目点拨】本题考查了异面直线所成的角.9、C【解题分析】
是等差数列,先根据已知求出首项和公差,再表示出,由的最小值确定n。【题目详解】由题得,,解得,那么,当n=7时,取到最小值-49.故选:C【题目点拨】本题考查等差数列前n项和,是基础题。10、A【解题分析】
由,求出,代入计算即可.【题目详解】由题意,则.故答案为A.【题目点拨】本题考查了向量的数量积,考查了学生的计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解题分析】
由题,根据垂径定理求得圆心到直线的距离,可得m的值,既而求得CD的长可得答案.【题目详解】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为4【题目点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.12、【解题分析】
先利用累加法求出数列的通项公式,然后将数列的通项裂开,利用裂项求和法求出数列的前项和.【题目详解】当时,.所以,,,,,.上述等式全部相加得,.,因此,数列的前项和为,故答案为:.【题目点拨】本题考查累加法求数列通项和裂项法求和,解题时要注意累加法求通项和裂项法求和对数列递推公式和通项公式的要求,考查运算求解能力,属于中等题.13、【解题分析】
利用,即可得出.【题目详解】解:由已知,,又
,
故答案为:.【题目点拨】本题考查了反三角函数的求值、单调性,考查了推理能力与计算能力,属于中档题.14、【解题分析】
分子、分母同除以,将代入化简即可.【题目详解】因为,所以,故答案为.【题目点拨】本题主要考查同角三角函数之间的关系的应用,属于基础题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.15、-1【解题分析】
首先根据,得到是以,的等差数列.再计算其前项和即可求出,的值.【题目详解】因为,.所以数列是以,的等差数列.所以.所以,,.故答案为:【题目点拨】本题主要考查等差数列的判断和等差数列的前项和的计算,属于简单题.16、2【解题分析】
根据条件,利用余弦定理可建立关于c的方程,即可解出c.【题目详解】由余弦定理得,即,解得或(舍去).故填2.【题目点拨】本题主要考查了利用余弦定理求三角形的边,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(1)【解题分析】
(1)由平面∥平面,根据面面平行的性质定理,可得,,再由,得到.由平面平面,根据面面垂直的性质定理可得平面,从而有.(2)过作于,根据题意有平面,过D作于H,连结AH,由三垂线定理知,所以是二面角的平面角.然后在在中,在中,利用三角形相似求得再在求解.【题目详解】(1)证明:∵平面∥平面,∴,,∵,,又∵平面平面,平面平面,∴平面,平面,∴.(2)过作于,∵为正三角形,∴D为中点,∵平面∴又∵,∴平面.在等边三角形中,,过D作于H,连结AH,由三垂线定理知,∴是二面角的平面角.在中,~,,∴,,∴.【题目点拨】本题主要考查几何体中面面平行的性质定理和面面垂直的性质定理及二角面角问题,还考查了空间想象,抽象概括,推理论证的能力,属于中档题.18、(1);(2)1【解题分析】
(1)取中点,连接,即为所求角。在中,易得MC,NC的长,MN可在直角三角形中求得。再用余弦定理易求得夹角。(2)连接,连接和交于点,连接,易得,所以为的中位线,所以为中点,所以的值为1。【题目详解】(1)取中点,连接因为为矩形,分别为中点,所以所以异面直线与所成角就是与所成的锐角或直角因为平面平面,平面平面矩形中,,平面所以平面又平面,所以中,,所以又是圆周上点,且,所以中,,由余弦定理可求得所以异面直线与所成角的余弦值为(2)连接,连接和交于点,连接因为直线平面,直线平面,平面平面所以矩形的对角线交点为中点所以为的中位线,所以为中点又,所以的值为1【题目点拨】(1)异面直线所成夹角一般是要平移到一个平面。(2)通过几何关系确定未知点的位置,再求解线段长即可。19、(1)最小正周期是(2)【解题分析】
(1)运用辅助角公式化简得;(2)先计算的值为,构造,求出的值.【题目详解】(1)因为,所以,所以函数的最小正周期是.(2)因为,所以,因为,所以,所以,则【题目点拨】利用角的配凑法,即进行角的整体代入求值,考查整体思想的运用.20、(1)(2)【解题分析】试题分析:(1)根据若做广告宣传,广告费为n千元比广告费为千元时多卖出件,可得,利用叠加法可求得.(2)根据题意在时,利润,可利用求最值.试题解析:(1)设表示广告费为0元时的销售量,由题意知,由叠加法可得即为所求。(2)设当时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度农业科技园区设施租赁协议4篇
- 启迪未来点亮梦想
- 2025版收入证明模板制作与市场推广合作合同3篇
- 2025年全球及中国气体激光清洗设备行业头部企业市场占有率及排名调研报告
- 2025年全球及中国住宅用灌溉喷水阀行业头部企业市场占有率及排名调研报告
- 2025-2030全球宠物肝脏功能补充剂行业调研及趋势分析报告
- 2025-2030全球印章套件行业调研及趋势分析报告
- 2025-2030全球光伏发电箱变行业调研及趋势分析报告
- 施工承包合同标准模板
- 2025版个人购房贷款还款顺序合同模板3篇
- 小学六年级数学上册《简便计算》练习题(310题-附答案)
- 2023-2024学年度人教版一年级语文上册寒假作业
- 培训如何上好一堂课
- 高教版2023年中职教科书《语文》(基础模块)下册教案全册
- 2024医疗销售年度计划
- 税务局个人所得税综合所得汇算清缴
- 人教版语文1-6年级古诗词
- 上学期高二期末语文试卷(含答案)
- 软件运维考核指标
- 空气动力学仿真技术:格子玻尔兹曼方法(LBM)简介
- 对表达方式进行选择与运用
评论
0/150
提交评论