版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天津市武清区数学高一第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列说法不正确的是()A.圆柱的侧面展开图是一个矩形B.圆锥过轴的截面是一个等腰三角形C.平行于圆台底面的平面截圆台,截面是圆面D.直角三角形绕它的一边旋转一周形成的曲面围成的几何体是圆锥2.已知,,则等于()A. B. C. D.3.为研究需要,统计了两个变量x,y的数据·情况如下表:其中数据x1、x2、x3…xn,和数据y1、y2、y3,…yn的平均数分别为和,并且计算相关系数r=-1.8,回归方程为,有如下几个结论:①点(,)必在回归直线上,即=b+;②变量x,y的相关性强;③当x=x1,则必有;④b<1.其中正确的结论个数为A.1 B.2 C.3 D.44.直线在轴上的截距为()A. B. C. D.5.函数的单调减区间为A.B.C.D.6.若集合A={x|2≤x<4}, B={x|x>3}A.{x|3≤x<4} B.{x|3<x<4} C.{x|2≤x<3} D.{x|2≤x≤3}7.中,,,,则的面积等于()A. B. C.或 D.或8.圆的半径为()A.1 B.2 C.3 D.49.已知向量,,若,则锐角α为()A.45° B.60° C.75° D.30°10.从装有2个白球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是A.至少有一个黑球与都是黑球 B.至少有一个黑球与至少有一个白球C.恰好有一个黑球与恰好有两个黑球 D.至少有一个黑球与都是白球二、填空题:本大题共6小题,每小题5分,共30分。11.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表所示(单位:人).参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230若从该班随机选l名同学,则该同学至少参加上述一个社团的概率为__________.12.平面四边形如图所示,其中为锐角三角形,,,则_______.13.已知等比数列的公比为2,前n项和为,则=______.14.已知的圆心角所对的弧长等于,则该圆的半径为______.15.已知1,,,,4成等比数列,则______.16.若向量与平行.则__.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,设.(1)若图象中相邻两条对称轴间的距离不小于,求的取值范围;(2)若的最小正周期为,且当时,的最大值是,求的解析式,并说明如何由的图象变换得到的图象.18.三个内角A,B,C对应的三条边长分别是,且满足.(1)求角的大小;(2)若,,求.19.某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价元99.29.49.69.810销量件1009493908578(1)若销量与单价服从线性相关关系,求该回归方程;(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润。附:对于一组数据,,……,其回归直线的斜率的最小二乘估计值为;本题参考数值:.20.已知函数的最小正周期为,将的图象向右平移个单位长度,再向上平移个单位长度得到函数的图象.(1)求函数的解析式;(2)在中,角所对的边分别为,若,且,求周长的取值范围.21.在数列中,,.(1)求证:数列是等差数列;(2)求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
根据旋转体的定义与性质,对选项中的命题分析、判断正误即可.【题目详解】A.圆柱的侧面展开图是一个矩形,正确;B.∵同一个圆锥的母线长相等,∴圆锥过轴的截面是一个等腰三角形,正确;C.根据平行于圆台底面的平面截圆台截面的性质可知:截面是圆面正确;D.直角三角形绕它的一条直角边旋转一周形成的曲面围成的几何体是圆锥,而直角三角形绕它的斜边旋转一周形成的曲面围成的几何体是两个对底面的两个圆锥,因此D不正确.故选:D.【题目点拨】本题考查了命题的真假判断,解题的关键是理解旋转体的定义与性质的应用问题,属于基础题.2、D【解题分析】
通过化简可得,再根据,可得,利用同角三角函数可得,则答案可得.【题目详解】解:,又,得,即,又,且,解得,,故选:D.【题目点拨】本题考查三角恒等变形的化简和求值,是中档题.3、C【解题分析】
根据回归方程的性质和相关系数的性质求解.【题目详解】回归直线经过样本中心点,故①正确;变量的相关系数的绝对值越接近与1,则两个变量的相关性越强,故②正确;根据回归方程的性质,当时,不一定有,故③错误;由相关系数知负相关,所以,故④正确;故选C.【题目点拨】本题考查回归直线和相关系数,注意根据回归方程得出的是估计值不是准确值.4、A【解题分析】
取计算得到答案.【题目详解】直线在轴上的截距:取故答案选A【题目点拨】本题考查了直线的截距,属于简单题.5、A【解题分析】
根据正弦函数的单调递减区间,列出不等式求解,即可得出结果.【题目详解】的单调减区间为,,解得函数的单调减区间为.故选A.【题目点拨】本题主要考查三角函数的单调性,熟记正弦函数的单调区间即可,属于常考题型.6、B【解题分析】
根据交集定义计算.【题目详解】由题意A∩B={x|3<x<4}.故选B.【题目点拨】本题考查集合的交集运算,属于基础题.7、D【解题分析】
先根据余弦定理求AC,再根据面积公式得结果.【题目详解】因为,所以或2,因此的面积等于或等于,选D.【题目点拨】本题考查余弦定理与三角形面积公式,考查基本求解能力,属基础题.8、A【解题分析】
将圆的一般方程化为标准方程,确定所求.【题目详解】因为圆,所以,所以,故选A.【题目点拨】本题考查圆的标准方程与一般方程互化,圆的标准方程通过展开化为一般方程,圆的一般方程通过配方化为标准方程,属于简单题.9、D【解题分析】
根据向量的平行的坐标表示,列出等式,即可求出.【题目详解】因为,所以,又为锐角,因此,即,故选D.【题目点拨】本题主要考查向量平行的坐标表示.10、C【解题分析】
列举每个事件所包含的基本事件,结合互斥事件和对立事件的定义,依次验证即可【题目详解】对于A:事件:“至少有一个黑球”与事件:“都是黑球”可以同时发生,如:两个都是黑球,∴这两个事件不是互斥事件,∴A不正确对于B:事件:“至少有一个黑球”与事件:“至少有一个白球”可以同时发生,如:一个白球一个黑球,∴B不正确对于C:事件:“恰好有一个黑球”与事件:“恰有两个黑球”不能同时发生,但从口袋中任取两个球时还有可能是两个都是白球,∴两个事件是互斥事件但不是对立事件,∴C正确对于D:事件:“至少有一个黑球”与“都是白球”不能同时发生,但一定会有一个发生,∴这两个事件是对立事件,∴D不正确故选C.【题目点拨】本题考查互斥事件与对立事件.首先要求理解互斥事件和对立事件的定义,理解互斥事件与对立事件的联系与区别.同时要能够准确列举某一事件所包含的基本事件.属简单题二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
直接利用公式得到答案.【题目详解】至少参加上述一个社团的人数为15故答案为【题目点拨】本题考查了概率的计算,属于简单题.12、.【解题分析】
由二倍角公式求出,然后用余弦定理求得,再由余弦定理求.【题目详解】由题意,在中,,在中,,即,解得,或.若,则,,不合题意,舍去,所以.故答案为:.【题目点拨】本题考查余弦的二倍角公式,考查余弦定理.掌握余弦定理是解题关键.13、【解题分析】由等比数列的定义,S4=a1+a2+a3+a4=+a2+a2q+a2q2,得+1+q+q2=.14、【解题分析】
先将角度化为弧度,再根据弧长公式求解.【题目详解】解:圆心角,弧长为,,即该圆的半径长.故答案为:.【题目点拨】本题考查了角度和弧度的互化以及弧长公式的应用问题,属于基础题.15、2【解题分析】
因为1,,,,4成等比数列,根据等比数列的性质,可得,再利用,确定取值.【题目详解】因为1,,,,4成等比数列,所以,所以或,又因为,所以.故答案为:2【题目点拨】本题主要考查等比数列的性质,还考查运算求解的能力,属于基础题.16、【解题分析】
由题意利用两个向量共线的性质,两个向量坐标形式的运算法则,求得的值.【题目详解】由题意,向量与平行,所以,解得.故答案为.【题目点拨】本题主要考查了两个向量共线的性质,两个向量坐标形式的运算,着重考查了推理与计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);平移变换过程见解析.【解题分析】
(1)根据平面向量的坐标运算,表示出的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于及周期公式,即可求得的取值范围;(2)根据最小正周期,求得的值.代入解析式,结合正弦函数的图象、性质与的最大值是,即可求得的解析式.再根据三角函数图象平移变换,即可描述变换过程.【题目详解】∵∴∴(1)由题意可知,∴又,∴(2)∵,∴∴∵,∴∴当即时∴∴将图象上所有点向右平移个单位,得到的图象;再将得到的图象上所有点的横坐标变为原来的倍,纵坐标不变,得到的图象(或将图象上所有点的横坐标变为原来的倍,纵坐标不变,得到的图象;再将得到的图象上所有点向右平移个单位,得到的图象)【题目点拨】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.18、⑴(2)【解题分析】
⑴由正弦定理及,得,因为,所以;⑵由余弦定理,解得【题目详解】⑴由正弦定理得,由已知得,,因为,所以⑵由余弦定理,得即,解得或,负值舍去,所以【题目点拨】解三角形问题,常要求正确选择正弦定理或余弦定理对三角形中的边、角进行转换,再进行求解,同时注意三角形当中的边角关系,如内角和为180度等19、(1)(2)为使工厂获得最大利润,该产品的单价应定为9.5元.【解题分析】
(1)先根据公式求,再根据求即可求解;(2)先求出利润的函数关系式,再求函数的最值.【题目详解】解:(1)=…又所以故回归方程为(2)设该产品的售价为元,工厂利润为元,当时,利润,定价不合理。由得,故,,当且仅当,即时,取得最大值.因此,为使工厂获得最大利润,该产品的单价应定为9.5元.【题目点拨】本题考查线性回归方程和二次函数的最值.线性回归方程的计算要根据已知选择合适的公式.求二次函数的最值常用方法:1、根据函数单调性;2、配方法;3、基本不等式,注意等式成立的条件.20、(1),(2)【解题分析】
(1)首先根据周期为,得到,再根据图象的平移变换即可得到的解析式.(2)根据得到,根据余弦定理得到,根据基本不等式即可得到,再求周长的取值范围即可.【题目详解】(1)周期,,.将的图象向右平移个单位长度,再向上平移个单位长度得到.所以.(2),.因为,所以,..因为,所以.所以,即,.所以.【题目点拨】本题第一问考查三角函数的周期和平移变换,第二问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度专利实施许可合同的技术要求与服务内容
- 2024年国际贸易方式合同履行的法律规定
- 2024年常用借调合同合同模板大全版B版
- 2024年修订海上货物航运保险协议样本版B版
- 2024年专业防雷设备安装工程服务协议版
- 2024年国际货物销售协议模板版B版
- 2024年专业汽车典当服务协议模板版B版
- 2024年度原材料采购与供应链管理合同3篇
- 小学数学新教材培训心得体会3篇(人教版小学数学新课标心得体会)
- 2024家居建材供应中介协议范本一
- 颈椎间盘突出护理查房
- 110升压站1#主变就位作业票
- 防爆型除湿机施工方案
- 乡镇林业工作站站长应知应会1000题
- 大学语文优质课件《韩孟诗派》
- 2023年国家宪法宣传周知识竞赛答题考试题库300题(含答案)
- 机械原理-第4章力分析
- 浙江省衢州市衢江区2023-2024学年六年级上学期11月期中科学试题
- 液化石油气脱硫技术研究
- 旅游文化习题库含答案
- 1999-2023年南京大学844环境工程学考研真题及答案解析汇编
评论
0/150
提交评论