北京市海淀区中关村中学分校2024届高一数学第二学期期末联考试题含解析_第1页
北京市海淀区中关村中学分校2024届高一数学第二学期期末联考试题含解析_第2页
北京市海淀区中关村中学分校2024届高一数学第二学期期末联考试题含解析_第3页
北京市海淀区中关村中学分校2024届高一数学第二学期期末联考试题含解析_第4页
北京市海淀区中关村中学分校2024届高一数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市海淀区中关村中学分校2024届高一数学第二学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.400,40 B.200,10 C.400,80 D.200,202.已知等比数列an的公比为q,且q<1,数列bn满足bn=anA.-23 B.23 C.3.函数的定义域是().A. B. C. D.4.为了了解运动员对志愿者服务质量的意见,打算从1200名运动员中抽取一个容量为40的样本,考虑用系统抽样,则分段间隔为A.40 B.20 C.30 D.125.若两个球的半径之比为,则这两球的体积之比为()A. B. C. D.6.若,则下列不等式中不正确的是()A. B. C. D.7.已知正三角形ABC边长为2,D是BC的中点,点E满足,则()A. B. C. D.-18.函数的图像关于直线对称,则的最小值为()A. B. C. D.19.中国数学家刘微在《九章算术注》中提出“割圆”之说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣.”意思是“圆内接正多边形的边数无限增加的时候,它的周长的极限是圆的周长,它的面积的极限是圆的面积”.如图,若在圆内任取一点,则此点取自其内接正六边形的边界及其内部的概率为()A. B. C. D.10.已知函数,当时,取得最小值,则等于()A.9 B.7 C.5 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.数列的通项,前项和为,则____________.12.己知函数,,则的值为______.13.过直线上一点作圆的两条切线,切点分别为,若的最大值为,则实数__________.14.已知等差数列,,,,则______.15.若关于x的不等式的解集是,则_________.16.已知一个几何体的三视图如图所示,其中正视图是等腰直角三角形,则该几何体的体积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在正四棱柱中,底面边长为,侧棱长为.(1)求证:平面平面;(2)求直线与平面所成的角的正弦值;(3)设为截面内-点(不包括边界),求到面,面,面的距离平方和的最小值.18.某建筑公司用8000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4000平方米的楼房.经初步估计得知,如果将楼房建为x(x≥12)层,则每平方米的平均建筑费用为Q(x)=3000+50x(单位:元).(1)求楼房每平方米的平均综合费用f(x)的解析式.(2)为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用最小值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)19.已知函数.(1)求函数的值域和单调减区间;(2)已知为的三个内角,且,,求的值.20.设为正项数列的前项和,且满足.(1)求的通项公式;(2)令,,若恒成立,求的取值范围.21.在中,角、、所对的边分别为、、,且满足.(1)求角;(2)若,,求的周长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

由扇形图能得到总数,利用抽样比较能求出样本容量;由分层抽样和条形图能求出抽取的高中生近视人数.【题目详解】用分层抽样的方法抽取的学生进行调查,样本容量为:,抽取的高中生近视人数为:,故选A.【题目点拨】该题考查的是有关概率统计的问题,涉及到的知识点有扇形图与条形图的应用,以及分层抽样的性质,注意对基础知识的灵活应用,属于简单题目.2、A【解题分析】

由题可知数列{an}【题目详解】因为数列{bn}有连续四项在集合{-28,-19,-13,7,17,23}中,bn=an-1,所以数列{an}有连续四项在集合{-27,-18,-12,8,18,24}中,所以数列{an}的连续四项不同号,即【题目点拨】本题主要考查等比数列的综合应用,意在考查学生的分析能力,逻辑推理能力,分类讨论能力,难度较大.3、C【解题分析】函数的定义域即让原函数有意义即可;原式中有对数,则故得到定义域为.故选C.4、C【解题分析】

根据系统抽样的定义和方法,结合题意可分段的间隔等于个体总数除以样本容量,即可求解.【题目详解】根据系统抽样的定义和方法,结合题意可分段的间隔,故选C.【题目点拨】本题主要考查了系统抽样的定义和方法,其中解答中熟记系统抽样的定义和方法是解答的关键,着重考查了推理与运算能力,属于基础题.5、C【解题分析】

根据球的体积公式可知两球体积比为,进而得到结果.【题目详解】由球的体积公式知:两球的体积之比故选:【题目点拨】本题考查球的体积公式的应用,属于基础题.6、C【解题分析】

,可得,则根据不等式的性质逐一分析选项,A:,,所以成立;B:,则,根据基本不等式以及等号成立的条件则可判断;C:且,根据可乘性可知结果;D:,根据乘方性可判断结果.【题目详解】A:由题意,不等式,可得,则,,所以成立,所以A是正确的;B:由,则,所以,因为,所以等号不成立,所以成立,所以B是正确的;C:由且,根据不等式的性质,可得,所以C不正确;D:由,可得,所以D是正确的,故选:C.【题目点拨】本题考查不等式的性质,不等式等号成立的条件,熟记不等式的性质是解题的关键,属于基础题.7、C【解题分析】

化简,分别计算,,代入得到答案.【题目详解】正三角形ABC边长为2,D是BC的中点,点E满足故答案选C【题目点拨】本题考查了向量的计算,将是解题的关键,也可以建立直角坐标系解得答案.8、C【解题分析】

的对称轴为,化简得到得到答案.【题目详解】对称轴为:当时,有最小值为故答案选C【题目点拨】本题考查了三角函数的对称轴,将对称轴表示出来是解题的关键,意在考查学生对于三角函数性质的灵活运用.9、C【解题分析】

设出圆的半径,表示出圆的面积和圆内接正六边形的面积,即可由几何概型概率计算公式得解.【题目详解】设圆的半径为则圆的面积为圆内接正六边形的面积为由几何概型概率可知,在圆内任取一点,则此点取自其内接正六边形的边界及其内部的概率为故选:C【题目点拨】本题考查了圆的面积及圆内接正六边形的面积求法,几何概型概率的计算公式,属于基础题.10、B【解题分析】

先对函数进行配凑,使得能够使用均值不等式,再利用均值不等式,求得结果.【题目详解】因为故当且仅当,即时,取得最小值.故,则.故选:B.【题目点拨】本题考查均值不等式的使用,属基础题;需要注意均值不等式使用的条件.二、填空题:本大题共6小题,每小题5分,共30分。11、7【解题分析】

根据数列的通项公式,求得数列的周期为4,利用规律计算,即可求解.【题目详解】由题意,数列的通项,可得,,得到数列是以4项为周期的形式,所以=.故答案为:7.【题目点拨】本题主要考查了数列的求和问题,其中解答中根据数列的通项公式求得数列的周期,以及各项的变化规律是解答的关键,属于基础题,着重考查了.12、1【解题分析】

将代入函数计算得到答案.【题目详解】函数故答案为:1【题目点拨】本题考查了三角函数的计算,属于简单题.13、1或;【解题分析】

要使最大,则最小.【题目详解】圆的标准方程为,圆心为,半径为.∵若的最大值为,∴,解得或.故答案为1或.【题目点拨】本题考查直线与圆的位置关系,解题思路是平面上对圆的张角问题,显然在点固定时,圆外的点作圆的两条切线,这两条切线间的夹角是最大角,而当点离圆越近时,这个又越大.14、【解题分析】

利用等差中项的基本性质求得,,并利用等差中项的性质求出的值,由此可得出的值.【题目详解】由等差中项的性质可得,同理,由于、、成等差数列,所以,则,因此,.故答案为:.【题目点拨】本题考查利用等差中项的性质求值,考查计算能力,属于基础题.15、-14【解题分析】

由不等式的解集求出对应方程的实数根,利用根与系数的关系求出的值,从而可得结果.【题目详解】不等式的解集是,所以对应方程的实数根为和,且,由根与系数的关系得,解得,,故答案为.【题目点拨】本题主要考查一元二次不等式的解集与一元二次不等式的根之间的关系,以及韦达定理的应用,属于简单题.16、【解题分析】

首先根据三视图还原几何体,再计算体积即可.【题目详解】由三视图知:该几何体是以底面是直角三角形,高为的三棱锥,直观图如图所示:.故答案为:【题目点拨】本题主要考查三视图还原直观图,同时考查了锥体的体积计算,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)(3)【解题分析】

(1)利用在正方体的几何性质,得到,通过线面垂直和面面垂直的判定定理证明.(2)根据和平面平面,知是在平面上的射影,即为直线与平面所成的角,然后在中求解.(3)如图所示从向面,面,面引垂线,构成一个长方体,设到面,面,面的距离分别为x,y,z,,即长方体体对角线长的平方,当且仅当平面时,最小,然后用等体积法求解.【题目详解】(1)如图所示:在正方体中且,所以平面,又因为平面,所以平面平面.(2)因为,由(1)知平面平面,所以是在平面上的射影,所以即为直线与平面所成的角,在中,所以.(3)如图所示从向面,面,面引垂线,构成一个长方体,设到面,面,面的距离分别为x,y,z,,即长方体体对角线长的平方,当且仅当平面时,最小,又因为,即,,.【题目点拨】本题主要考查几何体中线面垂直,面面垂直的判定定理和线面角及距离问题,还考查了空间想象,抽象概括,推理论证的能力,属于中档题.18、(1);(2)该楼房应建为20层,每平方米的平均综合费用最小值为5000元.【解题分析】【试题分析】先建立楼房每平方米的平均综合费用函数,再应基本不等式求其最小值及取得极小值时:解:设楼房每平方米的平均综合费用,,当且仅当时,等号取到.所以,当时,最小值为5000元.19、(1),;(2).【解题分析】

(1)将函数化简,利用三角函数的取值范围的单调性得到答案.(2)通过函数计算,,再计算代入数据得到答案.【题目详解】(1)∵且∴故所求值域为由得:所求减区间:;(2)∵是的三个内角,,∴∴又,即又∵,∴,故,故.【题目点拨】本题考查了三角函数的最值,单调性,角度的大小,意在考查学生对于三角函数公式性质的灵活运用.20、(1)(2)【解题分析】

(1)代入求得,根据与的关系可求得,可知数列为等差数列,利用等差数列通项公式求得结果;验证后可得最终结果;(2)由(1)可得,采用裂项相消的方法求得,可知,从而得到的范围.【题目详解】(1)由题知:,……①令得:,解得:当时,……②①-②得:∴,即是以为首项

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论