2024届河南省郑州市第十九中学数学高一第二学期期末考试模拟试题含解析_第1页
2024届河南省郑州市第十九中学数学高一第二学期期末考试模拟试题含解析_第2页
2024届河南省郑州市第十九中学数学高一第二学期期末考试模拟试题含解析_第3页
2024届河南省郑州市第十九中学数学高一第二学期期末考试模拟试题含解析_第4页
2024届河南省郑州市第十九中学数学高一第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省郑州市第十九中学数学高一第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,图象的一部分如图所示的是()A. B.C. D.2.已知直线过点且与直线垂直,则该直线方程为()A. B.C. D.3.已知两个变量x,y之间具有线性相关关系,试验测得(x,y)的四组值分别为(1,2),(2,4),(3,5),(4,7),则y与x之间的回归直线方程为()A.y=0.8x+3 B.y=-1.2x+7.5C.y=1.6x+0.5 D.y=1.3x+1.24.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s1,s2分别表示甲、乙选手分数的标准差,则s1与s2的关系是().A.s1>s2 B.s1=s2 C.s1<s2 D.不确定5.某林区改变植树计划,第一年植树增长率200%,以后每年的植树增长率都是前一年植树增长率的12,若成活率为100%,经过4A.14 B.454 C.66.向量,,若,则()A.2 B. C. D.7.以两点A(-3,-1)和B(5,5)为直径端点的圆的标准方程是()A.(x-1)2+(y-2)2=10 B.(x-1)2+(y-2)2=100C.(x-1)2+(y-2)2=5 D.(x-1)2+(y-2)2=258.在中,,,,则的面积是()A. B. C.或 D.或9.已知集合A={x|x2﹣x﹣2<0},B={x|≥﹣1},则A∪B=()A.(﹣1,2) B.(﹣1,2] C.(0,1) D.(0,2)10.已知,且,,这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则()A.7 B.6 C.5 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.七位评委为某跳水运动员打出的分数的茎叶图如图,其中位数为_______.12.已知则sin2x的值为________.13.已知不等式x2-x-a>0的解集为x|x>3或14.已知向量,,若,则实数___________.15.在中,角所对的边分别为,,则____16.设数列是首项为0的递增数列,函数满足:对于任意的实数,总有两个不同的根,则的通项公式是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.爱心超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温单位:有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份每天的最高气温数据,得到下面的频数分布表:最高气温天数216362574(1)求六月份这种酸奶一天的需求量不超过300瓶的频率;(2)当六月份有一天这种酸奶的进货量为450瓶时,求这一天销售这种酸奶的平均利润(单位:元)18.设是正项等比数列的前项和,已知,(1)求数列的通项公式;(2)令,求数列的前项和.19.已知:三点,其中.(1)若三点在同一条直线上,求的值;(2)当时,求.20.已知数列为等差数列,为前项和,,(1)求的通项公式;(2)设,比较与的大小;(3)设函数,,求,和数列的前项和.21.已知向量与不共线,且,.(1)若与的夹角为,求;(2)若向量与互相垂直,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

设图中对应三角函数最小正周期为T,从图象看出,T=,所以函数的最小正周期为π,函数应为y=向左平移了个单位,即=,选D.2、A【解题分析】

根据垂直关系求出直线斜率为,再由点斜式写出直线。【题目详解】由直线与直线垂直,可知直线斜率为,再由点斜式可知直线为:即.故选A.【题目点拨】本题考查两直线垂直,属于基础题。3、C【解题分析】试题分析:设样本中线点为,其中,即样本中心点为,因为回归直线必过样本中心点,将代入四个选项只有B,C成立,画出散点图分析可知两个变量x,y之间正相关,故C正确.考点:回归直线方程4、C【解题分析】

先求均值,再根据标准差公式求标准差,最后比较大小.【题目详解】乙选手分数的平均数分别为所以标准差分别为因此s1<s2,选C.【题目点拨】本题考查标准差,考查基本求解能力.5、B【解题分析】

由题意知增长率形成以首项为2,公比为12的等比数列,从而第n年的增长率为12n-2,则第n【题目详解】由题意知增长率形成以首项为2,公比为12的等比数列,从而第n年的增长率为1则第n年的林区的树木数量为an∴a1=3a0,a因此,经过4年后,林区的树木量是原来的树木量的454【题目点拨】本题考查数列的性质和应用,解题的关键在于建立数列的递推关系式,然后逐项进行计算,考查分析问题和解决问题的能力,属于中等题.6、C【解题分析】试题分析:,,得得,故选C.考点:向量的垂直运算,向量的坐标运算.7、D【解题分析】分析:由条件求出圆心坐标和半径的值,从而得出结论.详解:圆心坐标为(1,2),半径r==5,故所求圆的标准方程为(x-1)2+(y-2)2=25.故选D.点睛:本题主要考查求圆的标准方程的方法,求出圆心坐标和半径的值,是解题的关键,属于基础题.8、C【解题分析】

先根据正弦定理求出角,从而求出角,再根据三角形的面积公式进行求解即可.【题目详解】解:由,,,根据正弦定理得:,为三角形的内角,或,或在中,由,,或则面积或.故选C.【题目点拨】本题主要考查了正弦定理,三角形的面积公式以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键,属于中档题.9、B【解题分析】

先分别求出集合A和B,由此能求出A∪B.【题目详解】∵集合A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|≥﹣1}={x|0<x≤2},∴A∪B={x|﹣1<x≤2}=(﹣1,2].故选B.【题目点拨】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.10、C【解题分析】

由,可得成等比数列,即有=4;讨论成等差数列或成等差数列,运用中项的性质,解方程可得,即可得到所求和.【题目详解】由,可得成等比数列,即有=4,①若成等差数列,可得,②由①②可得,1;若成等差数列,可得,③由①③可得,1.综上可得1.故选:C.【题目点拨】本题考查等差数列和等比数列的中项的性质,考查运算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、85【解题分析】

按照茎叶图,将这组数据按照从小到大的顺序排列,找出中间的一个数即可.【题目详解】按照茎叶图,这组数据是79,83,84,85,87,92,93.把这组数据按照从小到大的顺序排列,最中间一个是85.所以中位数为85.故答案为:85【题目点拨】本题考查对茎叶图的认识.考查中位数,属于基础题.12、【解题分析】

利用二倍角的余弦函数公式求出的值,再利用诱导公式化简,将的值代入计算即可求出值.【题目详解】解:∵,,则sin2x==,故答案为.【题目点拨】此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键.13、6【解题分析】

由题意可知-2,3为方程x2【题目详解】由题意可知-2,3为方程x2-x-a=0的两根,则-2×3=-a,即故答案为:6【题目点拨】本题主要考查一元二次不等式的解,意在考查学生对该知识的理解掌握水平,属于基础题.14、【解题分析】

由垂直关系可得数量积等于零,根据数量积坐标运算构造方程求得结果.【题目详解】,解得:故答案为:【题目点拨】本题考查根据向量垂直关系求解参数值的问题,关键是明确两向量垂直,则向量数量积为零.15、【解题分析】

利用正弦定理将边角关系式中的边都化成角,再结合两角和差公式进行整理,从而得到.【题目详解】由正弦定理可得:即:本题正确结果:【题目点拨】本题考查李用正弦定理进行边角关系式的化简问题,属于常规题.16、【解题分析】

利用三角函数的图象与性质、诱导公式和数列的递推公式,可得,再利用“累加”法和等差数列的前n项和公式,即可求解.【题目详解】由题意,因为,当时,,又因为对任意的实数,总有两个不同的根,所以,所以,又,对任意的实数,总有两个不同的根,所以,又,对任意的实数,总有两个不同的根,所以,由此可得,所以,所以.故答案为:.【题目点拨】本题主要考查了三角函数的图象与性质的应用,以及诱导公式,数列的递推关系式和“累加”方法等知识的综合应用,着重考查了推理与运算能力,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)460元.【解题分析】

(1)根据表中的数据,求得最高气温位于区间和最高气温低于20的天数,利用古典概型的概率计算公式,即可求得相应的概率;(2)分别求出温度不低于、温度在,以及温度低于时的利润及相应的概率,即可求解这一天销售这种酸奶的平均利润,得到答案.【题目详解】(1)根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间,需求量为300瓶,如果最高气温低于20,需求量为200瓶,得到最高气温位于区间和最高气温低于20的天数为,所以六月份这种酸奶一天的需求量不超过300瓶的频率.(2)当温度大于等于时,需求量为500瓶,利润为:元,当温度在时,需求量为300瓶,利润为:元,当温度低于时,需求量为200瓶,利润为:元,平均利润为【题目点拨】本题主要考查了古典概型及其概率的计算,以及概率的实际应用,其中解答中认真审题,熟练应用古典概型及其概率的计算公式,以及平均利润的计算方法是解答的关键,着重考查了推理与运算能力,属于中档试题.18、(1);(2)【解题分析】

(1)设正项等比数列的公比为,当时,可验证出,可知;根据可构造方程求得,进而根据等比数列通项公式可求得结果;(2)由(1)可得,采用错位相减法即可求得结果.【题目详解】(1)设正项等比数列的公比为当时,,解得:,不合题意由得:,又整理得:,即,解得:(2)由(1)得:…①则…②①②得:【题目点拨】本题考查等比数列通项公式的求解、错位相减法求解数列的前项和;关键是能够得到数列的通项公式后,根据等差乘以等比的形式确定采用错位相减法求得结果,对学生的计算和求解能力有一定要求.19、(1)(2)【解题分析】

(1)利用共线向量的特点求解m;(2)先利用求解m,再求解.【题目详解】(1)依题有:,共线.(2)由得:又【题目点拨】本题主要考查平面向量的应用,利用共线向量可以证明三点共线问题,利用向量可以解决长度问题.20、(1);(2);(3),,【解题分析】

(1)利用基本元的思想,将已知转化为的形式列方程组,解方程组求得的值,从而求得数列的通项公式.(2)利用裂项求和法求得表达式,判断出,利用对数函数的性质得到,由此得到.(3)首先求得,当时,根据的表达式,求得的表达式.利用分组求和法求得当时的表达式,并

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论