版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省温州市十五校联合体数学高一下期末达标测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图像的一条对称轴是()A. B. C. D.2.已知则()A. B. C. D.3.已知样本数据为3,1,3,2,3,2,则这个样本的中位数与众数分别为()A.2,3 B.3,3 C.2.5,3 D.2.5,24.与角终边相同的角是A. B. C. D.5.在中,角,,所对的边分别为,,,若,且,则的面积的最大值为()A. B. C. D.6.若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”7.若直线经过点,则此直线的倾斜角是()A. B. C. D.8.已知数列,如果,,,……,,……,是首项为1,公比为的等比数列,则=A. B. C. D.9.已知,则()A. B. C. D.10.点是角终边上一点,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设奇函数的定义域为R,且对任意实数满足,若当∈[0,1]时,,则____.12.已知等差数列,,,,则______.13.在数列中,,,则__________.14.已知函数,若,则__________.15.△ABC中,,,则=_____.16.甲船在岛的正南处,,甲船以每小时的速度向正北方向航行,同时乙船自出发以每小时的速度向北偏东的方向驶去,甲、乙两船相距最近的距离是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知不等式的解集为或.(1)求实数a,b的值;(2)解不等式.18.已知数列的递推公式为.(1)求证:数列为等比数列;(2)求数列的通项公式.19.已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形,,点为棱的中点,点在棱上运动.(1)求证;(2)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;(3)在(2)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.20.在中,内角的对边分别为,且.(1)求角;(2)若,,求的值.21.如图,在直三棱柱中,,二面角为直角,为的中点.(1)求证:平面平面;(2)求直线与平面所成的角.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】对称轴穿过曲线的最高点或最低点,把代入后得到,因而对称轴为,选.2、B【解题分析】
根据条件式,判断出,,且.由不等式性质、基本不等式性质或特殊值即可判断选项.【题目详解】因为所以可得,,且对于A,由对数函数的图像与性质可知,,所以A错误;对于B,由基本不等式可知,即由于,则,所以B正确;对于C,由条件可得,所以C错误;对于D,当时满足条件,但,所以D错误.综上可知,B为正确选项故选:B【题目点拨】本题考查了不等式性质的综合应用,根据基本不等式求最值,属于基础题.3、C【解题分析】
将样本数据从小到大排列即可求得中位数,再找出出现次数最多的数即为众数.【题目详解】将样本数据从小到大排列:1,2,2,3,3,3,中位数为,众数为3.故选:C.【题目点拨】本题考查了中位数和众数的概念,属于基础题.4、C【解题分析】∵与终边相同的角的集合为∴令,得∴与角终边相同的角是故选C5、A【解题分析】
由以及,结合二倍角的正切公式,可得,根据三角形的内角的范围可得,由余弦定理以及基本不等式可得,再根据面积公式可得答案.【题目详解】因为,且,所以,所以,则.由于为定值,由余弦定理得,即.根据基本不等式得,即,当且仅当时,等号成立.所以.故选:A【题目点拨】本题考查了二倍角的正切公式,考查了余弦定理,考查了基本不等式,考查了三角形的面积公式,属于中档题.6、A【解题分析】
根据不能同时发生的两个事件,叫互斥事件,依次判断.【题目详解】根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件;
故选A.【题目点拨】本题考查了互斥事件的定义.是基础题.7、D【解题分析】
先通过求出两点的斜率,再通过求出倾斜角的值。【题目详解】,选D.【题目点拨】先通过求出两点的斜率,再通过求出倾斜角的值。需要注意的是斜率不存在的情况。8、A【解题分析】分析:累加法求解。详解:,,解得点睛:形如的模型,求通项公式,用累加法。9、C【解题分析】
根据特殊值排除A,B选项,根据单调性选出C,D选项中的正确选项.【题目详解】当时,,故A,B两个选项错误.由于,故,所以C选项正确,D选项错误.故本小题选C.【题目点拨】本小题主要考查三角函数值,考查对数函数和指数函数的单调性,属于基础题.10、A【解题分析】
利用三角函数的定义求出的值,然后利用诱导公式可求出的值.【题目详解】由三角函数的定义可得,由诱导公式可得.故选A.【题目点拨】本题考查三角函数的定义,同时也考查了利用诱导公式求值,在利用诱导公式求值时,充分理解“奇变偶不变,符号看象限”这个规律,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据得到周期,再利用周期以及奇函数将自变量转变到给定区间计算函数值.【题目详解】因为,所以,所以,又因为,所以,则,故,又因为是奇函数,所以,则.【题目点拨】(1)形如的函数是周期函数,周期;(2)若要根据奇偶性求解分段函数的表达式,记住一个原则:“用未知表示已知”,也就是将自变量变形,利用已知范围和解析式求解.12、【解题分析】
利用等差中项的基本性质求得,,并利用等差中项的性质求出的值,由此可得出的值.【题目详解】由等差中项的性质可得,同理,由于、、成等差数列,所以,则,因此,.故答案为:.【题目点拨】本题考查利用等差中项的性质求值,考查计算能力,属于基础题.13、16【解题分析】
依次代入即可求得结果.【题目详解】令,则;令,则;令,则;令,则本题正确结果:【题目点拨】本题考查根据数列的递推公式求解数列中的项,属于基础题.14、【解题分析】
由三角函数的辅助角公式化简,关键需得出辅助角的正切值,再由函数的最大值求解.【题目详解】由三角函数的辅助公式得(其中),因为所以,所以,所以,,所以,故填:【题目点拨】本题考查三角函数的辅助角公式,属于基础题.15、【解题分析】试题分析:三角形中,,由,得又,所以有正弦定理得即即A为锐角,由得,因此考点:正余弦定理16、【解题分析】
根据条件画出示意图,在三角形中利用余弦定理求解相距的距离,利用二次函数对称轴及可求解出最值.【题目详解】假设经过小时两船相距最近,甲、乙分别行至,,如图所示,可知,,,.当小时时甲、乙两船相距最近,最近距离为.【题目点拨】本题考查解三角形的实际应用,难度较易.关键是通过题意将示意图画出来,然后将待求量用未知数表示,最后利用函数思想求最值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)答案不唯一,见解析【解题分析】
(1)题意说明是方程的解,代入可得,把代入可求得原不等式的解集,从而得值;(2)因式分解后讨论和6的大小可得不等式的解集.【题目详解】(1)依题意,得:,解得,所以,不等式为,解得,或,所以,所以,;(2)不等式为:,即,当时,解集为当时,解集为当时,解集为【题目点拨】本题考查解一元二次不等式,考查一元二次不等式的解集与一元二次方程根的关系,在解含参数的一元二次不等式时要注意分类讨论.18、(1)证明见解析;(2).【解题分析】
(1)直接利用数列的递推关系式证明结论;(2)由(1)可求出数列的通项公式,进而得到的通项公式.【题目详解】(1)∵数列{an}的首项a1=2,且,∴an+1+=3(an+),即∴是首项为,公比为3的等比数列;(2)由(1)可得a1+=,∴,∴数列的通项公式.【题目点拨】本题考查等比数列的证明考查了等比数列的通项公式,属于中档题.19、(1)见解析;(2);(3)存在,为中点.【解题分析】
(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),要证A1C⊥AE,可证,只需证明,利用向量的数量积运算即可证明;(2)分别求出平面EA1D、平面A1DB的一个法向量,由两法向量夹角余弦值的绝对值等于,解得m值,由此可得答案;(3)在(2)的条件下,设F(x,y,0),可知与平面A1DB的一个法向量平行,由此可求出点F坐标,进而求出||,即得答案.【题目详解】(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),C(0,0,0),A(0,2,0),A1(0,2,2),D(0,0,1),B(2,0,0),=(0,﹣2,﹣2),=(m,﹣2,2),因为=0+(﹣2)×(﹣2)﹣2×2=0,所以⊥,即A1C⊥AE;(2)=(m,0,1),=(0,2,1),设=(x,y,z)为平面EA1D的一个法向量,则即,取=(2,m,﹣2m),=(2,0,﹣1),设=(x,y,z)为平面A1DB的一个法向量,则,即,取=(1,﹣1,2),由二面角E﹣A1D﹣B的平面角的余弦值为,得||=,解得m=1,平面A1DB的一个法向量=(1,﹣1,2),根据点E到面的距离为:.(3)由(2)知E(1,0,2),且=(1,﹣1,2)为平面A1DB的一个法向量,设F(x,y,0),则=(x﹣1,y,﹣2),且,所以x﹣1=﹣1,y=1,解得x=0,y=1,所以=(﹣1,1,﹣2),==,故EF的长度为,此时点F(0,1,0).存在F点为AC中点.【题目点拨】本题考查重点考查直线与平面垂直的性质、二面角的平面角及其求法、空间点、线、面间距离计算,考查学生空间想象能力、推理论证能力.20、(1)(2),【解题分析】
(1)由正弦定理可得,求得,即可解得角;(2)由余弦定理,列出方程,即可求解.【题目详解】(1)由题意知,由正弦定理可得,因为,则,所以,即,又由,所以.(2)由(1)知和,,由余弦定理,即,即,解得,所以.【题目点拨】本题主要考查了正弦定理、余弦定理的应用,其中解答中熟记三角形的正弦、余弦定理,准确计算是解答的挂念,着重考查了推理与计算能力,属于基础题.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版高考物理二轮复习 素养培优1 “板块”模型中动力学、能量和动量的综合
- 陕西省咸阳市实验中学2024-2025学年七年级上学期第二次质量检测生物学试题(含答案)
- 辽宁省大连市西岗区第三十四中学2024-2025学年七年级上学期12月月考数学试卷(无答案)
- 2024年天津市蓟州第一中学九年级12月月考-道德与法治试卷
- 医学教材 抗击疫情 我们在行动
- 高一(上)统编版 历史 第一单元《第2课 诸侯纷争与变法运动》课件
- 2025届甘肃省庆阳市高三一模考试语文试题(含答案解析)
- 《国关理论讲座》课件
- 年产200万袋蒸鸭系列休闲食品生产线项目可行性研究报告写作模板-拿地申报
- 《社保与金悦养老》课件
- 荒漠区生态治理工程(尼龙网沙障、植物固沙)施工方案
- VR游戏设计与制作(四川长江职业学院)知到智慧树答案
- 陕西民族传统体育铸牢中华民族共同体意识的路径研究
- 2024版光伏发电站清洗维护合同3篇
- 2024冬季安全十防措施专题培训
- 33 《鱼我所欲也》对比阅读-2024-2025中考语文文言文阅读专项训练(含答案)
- 第8讲-人无精神则不立-国无精神则不强-读本解读课件(9张)
- 《中华民族共同体概论》考试复习题库(含答案)
- 2023-2024学年深圳市初三中考适应性考试英语试题(含答案)
- NB-T 47013.15-2021 承压设备无损检测 第15部分:相控阵超声检测
- 复变函数论与运算微积智慧树知到课后章节答案2023年下哈尔滨工业大学(威海)
评论
0/150
提交评论