版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邯郸市六校2024届数学高一下期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线在轴上的截距为()A.2 B.﹣3 C.﹣2 D.32.设,是两条不同的直线,,是两个不同的平面,是下列命题正确的是()A.若,,则 B.若,,,则C.若,,,则 D.若,,,则3.各项不为零的等差数列中,,数列是等比数列,且,则()A.4 B.8 C.16 D.644.设为等比数列的前n项和,若,则()A.-11 B.-8 C.5 D.115.若,则的大小关系为A. B. C. D.6.如果点位于第四象限,则角是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角7.若实数x,y满足条件,则目标函数z=2x-y的最小值()A. B.-1 C.0 D.28.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的.祖暅原理的内容是:“幂势既同,则积不容异”,“势”即是高,“幂”是面积.意思是,如果夹在两平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都是h),其中:三棱锥的体积为V,四棱锥的底面是边长为a的正方形,圆锥的底面半径为r,现用平行于这两个平面的平面去截三个几何体,如果得到的三个截面面积总相等,那么,下面关系式正确的是()A.,, B.,,C.,, D.,,9.已知且为常数,圆,过圆内一点的直线与圆相交于两点,当弦最短时,直线的方程为,则的值为()A.2 B.3 C.4 D.510.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元二、填空题:本大题共6小题,每小题5分,共30分。11.如图,长方体的体积是120,E为的中点,则三棱锥E-BCD的体积是_____.12.设a>0,角α的终边经过点P(﹣3a,4a),那么sinα+2cosα的值等于.13.已知:,则的取值范围是__________.14.在△ABC中,sin2A=sin15.已知直线与圆交于两点,过分别作的垂线与轴交于两点,则_______.16.给出以下四个结论:①过点,在两轴上的截距相等的直线方程是;②若是等差数列的前n项和,则;③在中,若,则是等腰三角形;④已知,,且,则的最大值是2.其中正确的结论是________(写出所有正确结论的番号).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知α为锐角,且tanα=(I)求tanα+(II)求5sin18.已知数列中,,点在直线上,其中.(1)令,求证数列是等比数列;(2)求数列的通项;(3)设、分别为数列、的前项和是否存在实数,使得数列为等差数列?若存在,试求出,若不存在,则说明理由.19.某专卖店为了对新产品进行合理定价,将该产品按不同的单价试销,调查统计如下表:售价(元)45678周销量(件)9085837973(1)求周销量y(件)关于售价x(元)的线性回归方程;(2)按(1)中的线性关系,已知该产品的成本为2元/件,为了确保周利润大于598元,则该店应该将产品的售价定为多少?参考公式:,.参考数据:,20.某建筑公司用8000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4000平方米的楼房.经初步估计得知,如果将楼房建为x(x≥12)层,则每平方米的平均建筑费用为Q(x)=3000+50x(单位:元).(1)求楼房每平方米的平均综合费用f(x)的解析式.(2)为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用最小值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)21.某运动爱好者对自己的步行运动距离(单位:千米)和步行运动时间(单位:分钟)进行统计,得到如下的统计资料:如果与存在线性相关关系,(1)求线性回归方程(精确到0.01);(2)将分钟的时间数据称为有效运动数据,现从这6个时间数据中任取3个,求抽取的3个数据恰有两个为有效运动数据的概率.参考数据:,参考公式:,.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
令,求出值则是截距。【题目详解】直线方程化为斜截式为:,时,,所以,在轴上的截距为-3。【题目点拨】轴上的截距:即令,求出值;同理轴上的截距:即令,求出值2、D【解题分析】
根据空间中线线,线面,面面位置关系,逐项判断即可得出结果.【题目详解】A选项,若,,则可能平行、相交、或异面;故A错;B选项,若,,,则可能平行或异面;故B错;C选项,若,,,如果再满足,才会有则与垂直,所以与不一定垂直;故C错;D选项,若,,则,又,由面面垂直的判定定理,可得,故D正确.故选D【题目点拨】本题主要考查空间的线面,面面位置关系,熟记位置关系,以及判定定理即可,属于常考题型.3、D【解题分析】
根据等差数列性质可求得,再利用等比数列性质求得结果.【题目详解】由等差数列性质可得:又各项不为零,即由等比数列性质可得:本题正确选项:【题目点拨】本题考查等差数列、等比数列性质的应用,属于基础题.4、A【解题分析】设数列{an}的公比为q.由8a2+a5=0,得a1q(8+q3)=0.又∵a1q≠0,∴q=-2.∴===-11.故选A.5、A【解题分析】
利用作差比较法判断得解.【题目详解】①,∵,∴,故.②∵,∴,所以a>ab.综上,故选A.【题目点拨】本题主要考查作差比较法比较实数的大小,意在考查学生对该知识的理解掌握水平,属于基础题.6、C【解题分析】
由点位于第四象限列不等式,即可判断的正负,问题得解.【题目详解】因为点位于第四象限所以,所以所以角是第三象限角故选C【题目点拨】本题主要考查了点的坐标与点的位置的关系,还考查了等价转化思想及三角函数值的正负与角的终边的关系,属于基础题.7、A【解题分析】
线性规划问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。【题目详解】可行域如图所示,当目标函数平移到A点时z取最小值,故选A【题目点拨】线性规划中线性的目标函数问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。8、D【解题分析】
由祖暅原理可知:三个几何体的体积相等,根据椎体体积公式即可求解.【题目详解】由祖暅原理可知:三个几何体的体积相等,则,解得,由,解得,所以.故选:D【题目点拨】本题考查了椎体的体积公式,需熟记公式,属于基础题.9、B【解题分析】
由圆的方程求出圆心坐标与半径,结合题意,可得过圆心与点(1,2)的直线与直线2x﹣y=0垂直,再由斜率的关系列式求解.【题目详解】圆C:化简为圆心坐标为,半径为.如图,由题意可得,当弦最短时,过圆心与点(1,2)的直线与直线垂直.则,即a=1.故选:B.【题目点拨】本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理.10、D【解题分析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.二、填空题:本大题共6小题,每小题5分,共30分。11、10.【解题分析】
由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【题目详解】因为长方体的体积为120,所以,因为为的中点,所以,由长方体的性质知底面,所以是三棱锥的底面上的高,所以三棱锥的体积.【题目点拨】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.12、﹣【解题分析】试题分析:利用任意角三角函数定义求解.解:∵a>0,角α的终边经过点P(﹣3a,4a),∴x=﹣3a,y=4a,r==5a,∴sinα+2cosα==﹣.故答案为﹣.考点:任意角的三角函数的定义.13、【解题分析】
由已知条件将两个角的三角函数转化为一个角的三角函数,再运用三角函数的值域求解.【题目详解】由已知得,所以,又因为,所以,解得,所以,故填.【题目点拨】本题考查三角函数的值域,属于基础题.14、π【解题分析】
根据正弦定理化简角的关系式,从而凑出cosA【题目详解】由正弦定理得:a2=则cos∵A∈0,π本题正确结果:π【题目点拨】本题考查利用正弦定理和余弦定理解三角形问题,属于基础题.15、【解题分析】
联立直线的方程和圆的方程,求得两点的坐标,根据点斜式求得直线的方程,进而求得两点的坐标,由此求得的长.【题目详解】由解得,直线的斜率为,所以直线的斜率为,所以,令,得,所以.故答案为4【题目点拨】本小题主要考查直线和圆的位置关系,考查相互垂直的两条直线斜率的关系,考查直线的点斜式方程,属于中档题.16、②④【解题分析】
①中满足题意的直线还有,②中根据等差数列前项和的特点,得到,③中根据同角三角函数关系进行化简计算,从而进行判断,④中根据基本不等式进行判断.【题目详解】①中过点,在两轴上的截距相等的直线还可以过原点,即两轴上的截距都为,即直线,所以错误;②中是等差数列的前n项和,根据等差数列前项和的特点,,是一个不含常数项的二次式,从而得到,即,所以正确;③中在中,若,则可得,所以可得或,所以可得或,从而得到为直角三角形或等腰三角形,所以错误;④中因为,,且,由基本不等式,得到,所以,当且仅当,即时,等号成立.所以,即的最大值是,所以正确.故答案为:②④【题目点拨】本题考查截距相等的直线的特点,等差数列前项和的特点,判断三角形形状,基本不等式求积的最大值,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I)tanα+π【解题分析】试题分析:(1)根据两角和差的正切公式,将式子展开,根据题干中的条件代入即可;(2)这是其次式的考查,上下同除以cosα(I)tanα+(II)因为tanα=1518、(1)证明过程见详解;(2);(3)存在实数,使得数列为等差数列.【解题分析】
(1)先由题意得到,再由,得到,即可证明结论成立;(2)先由(1)求得,推出,利用累加法,即可求出数列的通项;(3)把数列an}、{bn}通项公式代入an+2bn,进而得到Sn+2T的表达式代入Tn,进而推断当且仅当λ=2时,数列是等差数列.【题目详解】(1)因为点在直线上,所以,因此由得所以数列是以为公比的等比数列;(2)因为,由得,故,由(1)得,所以,即,所以,,…,,以上各式相加得:所以;(3)存在λ=2,使数列是等差数列.由(Ⅰ)、(Ⅱ)知,an+2bn=n﹣2∴又=∴,∴当且仅当λ=2时,数列是等差数列.【题目点拨】本题主要考查等差数列与等比数列的综合,熟记等比数列的定义,等比数列的通项公式,以及等差数列与等比数列的求和公式即可,属于常考题型.19、(1);(2)14元【解题分析】
(1)由表中数据求得,结合参考数据可得.再代入方程即可求得线性回归方程.(2)设售价为元,代入(1)中的回归方程,求得销量.即可求得利润的表达式.由于周利润大于598元,得不等式后,解不等式即可求解.【题目详解】(1)由表可得,因为,由参考数据,,所以代入公式可得,则,所以线性回归方程;(2)设售价为元,由(1)知周销量为,所以利润,解得,因为,则.所以为了确保周利润大于598元,则该店应该将产品的售价定为14元.【题目点拨】本题考查了线性回归方程的求法和简单应用,一元二次不等式的解法,属于基础题.20、(1);(2)该楼房应建为20层,每平方米的平均综合费用最小值为5000元.【解题分析】【试题分析】先建立楼房每平方米的平均综合费用函数,再应基本不等式求其最小值及取得极小值时:解:设楼房每平方米的平均综合费用,,当且仅当时,等号取到.所以,当时,最小值为5000元.21、(1)(2)【解题分析】
(1)先计算所给数据距离、时间的平均值,,利用公式求,再利用回归方程求.(2)由(1)计算的个数,先求从6个中任取3个数据的总的取法,再计算抽取的3个数据恰有两个为有效运动数据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版船舶设备维修保养综合服务合同3篇
- 2024版河道清渠建设施工协议范本一
- 2024甲乙双方就电子商务平台建设与运营之合作协议
- 九下语文《送东阳马生序》阅读问答题必刷必背(答案版)
- 2024年退役士兵供养合同3篇
- 2024弱电智能化系统集成与调试服务合同2篇
- 2024年物流司机劳务合同
- ups不间断电源建设项目合同(2024年)
- 2024年龙门吊设备租赁服务协议版B版
- 2024年石料供应合同模板3篇
- 八年级数学上册《第十八章 平行四边形》单元测试卷及答案(人教版)
- 中职计算机应用基础教案
- 盘龙煤矿矿山地质环境保护与土地复垦方案
- 消防安全评估质量控制体系(2020年整理)课件
- 新生儿沐浴及抚触护理
- 理想气体的性质与热力过程
- 2022年浙江省各地市中考生物试卷合辑7套(含答案)
- 性病转诊与会诊制度
- 教学案例 英语教学案例 市赛一等奖
- 南京市劳动合同书(全日制文本)
- GB/T 28859-2012电子元器件用环氧粉末包封料
评论
0/150
提交评论