山西省太原市第六十六中学2024届数学高一第二学期期末经典试题含解析_第1页
山西省太原市第六十六中学2024届数学高一第二学期期末经典试题含解析_第2页
山西省太原市第六十六中学2024届数学高一第二学期期末经典试题含解析_第3页
山西省太原市第六十六中学2024届数学高一第二学期期末经典试题含解析_第4页
山西省太原市第六十六中学2024届数学高一第二学期期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省太原市第六十六中学2024届数学高一第二学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列的前项和为,,且满足,若,则的值为()A. B. C. D.2.设m,n是两条不同的直线,α A.若m⊥β,n⊥β , n⊥α,则m⊥αC.若m⊥n, n∥α,则m⊥α D.若m⊥n3.如图,已知边长为的正三角形内接于圆,为边中点,为边中点,则为()A. B. C. D.4.已知函数,在中,内角的对边分别是,内角满足,若,则的周长的取值范围为()A. B. C. D.5.已知,下列不等式中成立的是()A. B. C. D.6.已知数列满足,则()A.10 B.20 C.100 D.2007.设是等比数列,则“”是“数列是递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.若f(x)=af1(x)bf2(x)a,b∈R已知g1(x)=(-x2+12x-20)12生成函数g(x),已知g(4)=2(6-3),A.1 B.4 C.6 D.99.已知数列,其前n项和为,且,则的值是()A.4 B.8 C.2 D.910.已知,为直线,,为平面,下列命题正确的是()A.若,,则B.若,,则与为异面直线C.若,,,则D.若,,,则二、填空题:本大题共6小题,每小题5分,共30分。11.某学校高一年级举行选课培训活动,共有1024名学生、家长、老师参加,其中家长256人.学校按学生、家长、老师分层抽样,从中抽取64人,进行某问卷调查,则抽到的家长有___人12.计算:________13.在扇形中,如果圆心角所对弧长等于半径,那么这个圆心角的弧度数为______.14.已知数列{an}、{bn}都是公差为1的等差数列,且a1+b1=515.在中,,,则角_____.16.______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设,求函数的最小值为__________.18.已知圆:与圆:.(1)求两圆的公共弦长;(2)过平面上一点向圆和圆各引一条切线,切点分别为,设,求证:平面上存在一定点使得到的距离为定值,并求出该定值.19.如图,在四棱锥中,底面为梯形,,平面平面是的中点.(1)求证:平面;(2)若,证明:20.为了解学生的学习情况,某学校在一次考试中随机抽取了20名学生的成绩,分成[50,60),[60,70),[70,80),[80,90),[90,100]五组,绘制了如图所示频率分布直方图.求:(Ⅰ)图中m的值;(II)估计全年级本次考试的平均分;(III)若从样本中随机抽取分数在[80,100]的学生两名,求所抽取两人至少有一人分数不低于90分的概率.21.己知点,直线l与圆C:(x一1)2+(y一2)2=4相交于A,B两点,且OA⊥OB.(1)若直线OA的方程为y=一3x,求直线OB被圆C截得的弦长;(2)若直线l过点(0,2),求l的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

由递推关系可证得数列为等差数列,利用等差数列通项公式求得公差;利用等差数列通项公式和前项和公式分别求得和,代入求得结果.【题目详解】由得:数列为等差数列,设其公差为,,解得:,本题正确选项:【题目点拨】本题考查等差数列基本量的计算,涉及到利用递推关系式证明数列为等差数列、等差数列通项公式和前项和公式的应用.2、A【解题分析】

依据立体几何有关定理及结论,逐个判断即可。【题目详解】A正确:利用“垂直于同一个平面的两条直线平行”及“两条直线有一条垂直于一个平面,则另一条也垂直于该平面”,若m⊥β且n⊥β ,则m//n,又n⊥α,所以m⊥αB错误:若m∥β, , β⊥α,则C错误:若m⊥n, n∥α,则m可能垂直于平面α,也可能平行于平面α,还可能在平面D错误:若m⊥n , n⊥β , β⊥α,则【题目点拨】本题主要考查立体几何中的定理和结论,意在考查学生几何定理掌握熟练程度。3、B【解题分析】

如图,是直角三角形,是等边三角形,,,则与的夹角也是30°,∴,又,∴.故选B.【题目点拨】本题考查平面向量的数量积,解题时可通过平面几何知识求得向量的模,向量之间的夹角,这可简化运算.4、B【解题分析】

首先根据降幂公式以及辅助角公式化简,把带入利用余弦定理以及基本不等式即可.【题目详解】由题意得,为三角形内角所以,所以,因为,所以,,当且仅当时取等号,因为,所以,所以选择B【题目点拨】本题主要考查了三角函数的化简,以及余弦定理和基本不等式.在化简的过程中常用到的公式有辅助角、二倍角、两角和与差的正弦、余弦等.属于中等题.5、A【解题分析】

逐个选项进行判断即可.【题目详解】A选项,因为,所以.当时即不满足选项B,C,D.故选A.【题目点拨】此题考查不等式的基本性质,是基础题.6、C【解题分析】

由题可得数列是以为首相,为公差的等差数列,求出数列的通项公式,进而求出【题目详解】因为,所以数列是以为首项,为公差的等差数列,所以,则【题目点拨】本题考查由递推公式证明数列是等差数列以及等差数列的通项公式,属于一般题.7、B【解题分析】

由,可得,解得或,根据等比数列的单调性的判定方法,结合充分、必要条件的判定方法,即可求解,得到答案.【题目详解】设等比数列的公比为,则,可得,解得或,此时数列不一定是递增数列;若数列为递增数列,可得或,所以“”是“数列为递增数列”的必要不充分条件.故选:B.【题目点拨】本题主要考查了等比数列的通项公式与单调性,以及充分条件、必要条件的判定,其中解答中熟记等比数列的单调性的判定方法是解答本题的关键,着重考查了推理与运算能力,属于基础题.8、B【解题分析】

根据变换T(m,n)可生成函数g(x)=mg2(x)-ng1(x)=m(-x2+10x)1【题目详解】由题意可知g(x)=mg又g(4)=2(6-解得m=n=1,所以g(x)=又g(x)=10-x因为y=1x+x-2在x∈[2,10]上单调递减且为正值,y=10-x在x∈[2,10]上单调递减且为正值,所以g(x)=10-x(【题目点拨】本题主要考查了函数的单调性,利用单调性求函数的最大值,涉及创设新情景及函数式的变形,属于难题9、A【解题分析】

根据求解.【题目详解】由题得.故选:A【题目点拨】本题主要考查数列和的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.10、D【解题分析】

利用空间中线线、线面、面面间的位置关系对选项逐一判断即可.【题目详解】由,为直线,,为平面,知:在A中,若,,则与相交、平行或异面,故A错误;在B中,若,,则与相交、平行或异面,故B错误;在C中,若,,,则与相交、平行或异面,故C错误;在D中,若,,,则由线面垂直、面面平行的性质定理得,故D正确.故选:D.【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、16【解题分析】

利用分层抽样的性质,直接计算,即可求得,得到答案.【题目详解】由题意,可知共有1024名学生、家长、老师参加,其中家长256人,通过分层抽样从中抽取64人,进行某问卷调查,则抽到的家长人数为人.故答案为16【题目点拨】本题主要考查了分层抽样的应用,其中解答中熟记分层抽样的概念和性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解题分析】

用正弦、正切的诱导公式化简求值即可.【题目详解】.【题目点拨】本题考查了正弦、正切的诱导公式,考查了特殊角的正弦值和正切值.13、1【解题分析】

根据弧长公式求解【题目详解】因为圆心角所对弧长等于半径,所以【题目点拨】本题考查弧长公式,考查基本求解能力,属基础题14、1【解题分析】

根据等差数列的通项公式把abn转化到a1+(bn-1)【题目详解】S=[=[=na1=4n+n(n-1)故答案为:12【题目点拨】本题主要考查等差数列通项公式和前n项和的应用,利用分组求和法是解决本题的关键.15、或【解题分析】

本题首先可以通过解三角形面积公式得出的值,再根据三角形内角的取值范围得出角的值。【题目详解】由解三角形面积公式可得:即因为,所以或【题目点拨】在解三角形过程中,要注意求出来的角的值可能有多种情况。16、【解题分析】

先令,得到,两式作差,根据等比数列的求和公式,化简整理,即可得出结果.【题目详解】令,则,两式作差得:所以故答案为:【题目点拨】本题主要考查数列的求和,熟记错位相加法求数列的和即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、9【解题分析】试题分析:本题解题的关键在于关注分母,充分运用发散性思维,经过同解变形构造基本不等式,从而求出最小值.试题解析:由得,则当且仅当时,上式取“=”,所以.考点:基本不等式;构造思想和发散性思维.18、(1)(2)【解题分析】

(1)把两圆方程相减得到公共弦所在直线方程,再根据点到直线距离公式与圆的垂径定理求两圆的公共弦长;(2)根据圆的切线长与半径的关系代入化简即可得到点的轨迹方程,进而求解.【题目详解】解:(1)由,相减得两圆的公共弦所在直线方程为:,设(0,0)到的距离为,则所以,公共弦长为所以,公共弦长为.(2)证明:由题设得:化简得:配方得:所以,存在定点使得到的距离为定值,且该定值为.【题目点拨】本题主要考查圆的应用.求两圆的公共弦关键在求公共弦所在直线方程;求动点与定点距离问题,首先要求出动点的轨迹方程.19、(1)证明见解析,(2)证明见解析【解题分析】

(1)首先取的中点,连接,.根据已知条件和三角形中位线定理得到,又因为四边形为平行四边形,所以,再利用线面平行的判定即可证明.(2)首先连接,利用线面垂直的判定证明平面,再根据线面垂直的性质即可证明.【题目详解】(1)取的中点,连接,.因为分别为,的中点,所以.又因为,所以.所以四边形为平行四边形,.又因为平面,所以平面.(2)连接,因为,是的中点,所以.因为平面平面,,所以平面.又因为平面,所以.平面.平面,所以.【题目点拨】本题第一问考查线面平行的证明,第二问考查利用线面垂直的性质证明线线垂直,属于中档题.20、(I)0.045;(II)75;(III)0.7【解题分析】

(Ⅰ)根据频率之和为1,结合题中数据,即可求出结果;(II)每组的中间值乘以该组频率,再求和,即可得出结果;(III)用列举法列举出总的基本事件,以及满足条件的基本事件,基本事件的个数比即为所求的概率.【题目详解】(Ⅰ)由题意可得:(Ⅱ)各组的频率分别为0.05,0.25,0.45,0.15,0.1,所以可估计全年级的平均分为;(Ⅲ)分数落在[80,90)的人数有3人,设为a,b,c,落在[90,100的人数有2人,设为A、B,则从中随机抽取两名的结果有{ab},(ac},{a4},(aB},{bc},(bA},(bB),{cA},{cB),{AB}共10种,其中至少有一人不低于90分的有7种,故概率为0.7.【题目点拨】本题主要考查由频率分布直方图求参数,以及求均值的问题,同时考查古典概型的问题,熟记古典概型的概率公式,以及均值的求法即可,属于常考题型.21、(1);(2).【解题分析】

(1)根据题意,求得直线OB的方程,利用点到直线的距离公式求得圆心到直线OB的距离,之后应用圆中的特殊三角形,求得弦长;(2)根据题意,可判

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论