版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市金山区金山中学2024届高一数学第二学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点均在球上,,若三棱锥体积的最大值为,则球的体积为A. B. C.32 D.2.已知表示三条不同的直线,表示两个不同的平面,下列说法中正确的是()A.若,则 B.若,则C.若,则 D.若,则3.若,,与的夹角为,则的值是()A. B. C. D.4.在中,已知,,则为()A.等腰直角三角形 B.等边三角形C.锐角非等边三角形 D.钝角三角形5.在中,内角A,B,C所对的边分别是a,b,c,若,,则的面积是()A. B. C. D.6.在中,角A,B,C所对的边分别为a,b,c,,,,则等于()A. B. C. D.17.已知两条直线,,两个平面,,下面说法正确的是()A. B. C. D.8.已知等差数列的公差为2,若成等比数列,则()A. B. C. D.9.已知、是不重合的平面,a、b、c是两两互不重合的直线,则下列命题:①;②;③.其中正确命题的个数是()A.3 B.2 C.1 D.010.圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知样本数据的方差是1,如果有,那么数据,的方差为______.12.将边长为2的正沿边上的高折成直二面角,则三棱锥的外接球的表面积为.13.水平放置的的斜二测直观图如图所示,已知,,则边上的中线的实际长度为______.14.已知函数的图象如图所示,则不等式的解集为______.15.在中,三个角所对的边分别为.若角成等差数列,且边成等比数列,则的形状为_______.16.已知实数满足,则的最小值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在直角中,,延长至点D,使得,连接.(1)若,求的值;(2)求角D的最大值.18.如图,已知在侧棱垂直于底面三棱柱中,,,,,点是的中点.(1)求证:;(2)求证:(3)求三棱锥的体积.19.已知函数.(1)求函数图象的对称轴方程;(2)若对于任意的,恒成立,求实数的取值范围.20.某企业生产一种产品,质量测试分为:指标不小于为一等品;指标不小于且小于为二等品;指标小于为三等品。其中每件一等品可盈利元,每件二等品可盈利元,每件三等品亏损元。现对学徒甲和正式工人乙生产的产品各件的检测结果统计如下:测试指标甲乙根据上表统计得到甲、乙生产产品等级的频率分别估计为他们生产产品等级的概率。求:(1)乙生产一件产品,盈利不小于元的概率;(2)若甲、乙一天生产产品分别为件和件,估计甲、乙两人一天共为企业创收多少元?(3)从甲测试指标为与乙测试指标为共件产品中选取件,求两件产品的测试指标差的绝对值大于的概率.21.某高速公路隧道内设双行线公路,其截面由一段圆弧和一个长方形的三边构成(如图所示).已知隧道总宽度为,行车道总宽度为,侧墙面高,为,弧顶高为.()建立适当的直角坐标系,求圆弧所在的圆的方程.()为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有.请计算车辆通过隧道的限制高度是多少.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
设是的外心,则三棱锥体积最大时,平面,球心在上.由此可计算球半径.【题目详解】如图,设是的外心,则三棱锥体积最大时,平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,设球半径为,则由得,解得,∴球体积为.故选A.【题目点拨】本题考查球的体积,关键是确定球心位置求出球的半径.2、D【解题分析】
利用线面平行、线面垂直的判定定理与性质依次对选项进行判断,即可得到答案.【题目详解】对于A,当时,则与不平行,故A不正确;对于B,直线与平面平行,则直线与平面内的直线有两种关系:平行或异面,故B不正确;对于C,若,则与不垂直,故C不正确;对于D,若两条直线垂直于同一个平面,则这两条直线平行,故D正确;故答案选D【题目点拨】本题考查空间中直线与直线、直线与平面位置关系相关定理的应用,属于中档题.3、C【解题分析】
由题意可得||•||•cos,,再利用二倍角公式求得结果.【题目详解】由题意可得||•||•cos,2sin15°4cos15°cos30°=2sin60°,故选:C.【题目点拨】本题主要考查两个向量的数量积的定义,二倍角公式的应用属于基础题.4、A【解题分析】
已知第一个等式利用正弦定理化简,再利用诱导公式及内角和定理表示,根据两角和与差的正弦函数公式化简,得到A=B,第二个等式左边前两个因式利用积化和差公式变形,右边利用二倍角的余弦函数公式化简,将A+B=C,A﹣B=0代入计算求出cosC的值为0,进而确定出C为直角,即可确定出三角形形状.【题目详解】将已知等式2acosB=c,利用正弦定理化简得:2sinAcosB=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∵A与B都为△ABC的内角,∴A﹣B=0,即A=B,已知第二个等式变形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,﹣[cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣cosC,∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣cosC,即(cosC+1)(2﹣cosC)=2﹣cosC,整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,∴cosC=0或cosC=2(舍去),∴C=90°,则△ABC为等腰直角三角形.故选A.【题目点拨】此题考查了正弦定理,两角和与差的正弦公式,二倍角的余弦函数公式,熟练掌握正弦定理是解本题的关键.5、C【解题分析】
根据题意,利用余弦定理可得ab,再利用三角形面积计算公式即可得出答案.【题目详解】由c2=(a﹣b)2+6,可得c2=a2+b2﹣2ab+6,由余弦定理:c2=a2+b2﹣2abcosC=a2+b2﹣ab,所以:a2+b2﹣2ab+6=a2+b2﹣ab,所以ab=6;则S△ABCabsinC;故选:C.【题目点拨】本题考查余弦定理、三角形面积计算公式,关键是利用余弦定理求出ab的值.6、D【解题分析】
根据题意,由正弦定理得,再把,,代入求解.【题目详解】由正弦定理,得,所以.故选:D【题目点拨】本题主要考查了正弦定理的应用,还考查了运算求解的能力,属于基础题.7、D【解题分析】
满足每个选项的条件时能否找到反例推翻结论即可。【题目详解】A:当m,n中至少有一条垂直交线才满足。B:很明显m,n还可以异面直线不平行。C:只有当m垂直交线时,否则不成立。故选:D【题目点拨】此题考查直线和平面位置关系,一般通过反例排除法即可解决,属于较易题目。8、B【解题分析】
通过成等比数列,可以列出一个等式,根据等差数列的性质,可以把该等式变成关于的方程,解这个方程即可.【题目详解】因为成等比数列,所以有,又因为是公差为2的等差数列,所以有,故本题选B.【题目点拨】本题考查了等比中项的性质,考查了等差数列的性质,考查了数学运算能力.9、C【解题分析】
由面面垂直的判定定理,可得①正确;利用列举所有可能,即可判断②③错误.【题目详解】①由面面垂直的判定定理,∵,a⊂β,∴α⊥β,故正确;
②,则平行,相交,异面都有可能,故不正确;
③,则与α平行,相交都有可能,故不正确.
故选:C.【题目点拨】本题主要考查线面关系的判断,考查的空间想象能力,属于基础题.判断线面关系问题首先要熟练掌握有关定理、推论,其次可以利用特殊位置排除错误结论.10、D【解题分析】
根据圆锥的体积求出底面圆的半径和高,求出母线长,即可计算圆锥的表面积.【题目详解】圆锥的高和底面半径之比,∴,又圆锥的体积,即,解得;∴,母线长为,则圆锥的表面积为.故选:D.【题目点拨】本题考查圆锥的体积和表面积公式,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】
利用方差的性质直接求解.【题目详解】根据题意,样本数据的平均数为,方差是1,则有,对于数据,其平均数为,其方差为,故答案为1.【题目点拨】本题考查方差的求法,考查方差的性质等基础知识,考查运算求解能力,是基础题.12、【解题分析】
解:根据题意可知三棱锥B﹣ACD的三条侧棱BD、DC、DA两两互相垂直,所以它的外接球就是它扩展为长方体的外接球,∵长方体的对角线的长为:,∴球的直径是,半径为,∴三棱锥B﹣ACD的外接球的表面积为:4π5π.故答案为5π考点:外接球.13、【解题分析】
利用斜二测直观图的画图规则,可得为一个直角三角形,且,得,从而得到边上的中线的实际长度为.【题目详解】利用斜二测直观图的画图规则,平行于轴或在轴上的线段,长度保持不变;平行于轴或在轴上的线段,长度减半,利用逆向原则,所以为一个直角三角形,且,所以,所以边上的中线的实际长度为.【题目点拨】本题考查斜二测画法的规则,考查基本识图、作图能力.14、【解题分析】
根据函数图象以及不等式的等价关系即可.【题目详解】解:不等式等价为或,
则,或,
故不等式的解集是.
故答案为:.【题目点拨】本题主要考查不等式的求解,根据不等式的等价性结合图象之间的关系是解决本题的关键.15、等边三角形【解题分析】
分析:角成等差数列解得,边成等比数列,则,再根据余弦定理得出的关系式.详解:角成等差数列,则解得,边成等比数列,则,余弦定理可知故为等边三角形.点睛:判断三角形形状,是根据题意推导边角关系的恒等式.16、【解题分析】
实数满足表示点在直线上,可以看作点到原点的距离,最小值是原点到直线的距离,根据点到直线的距离公式求解.【题目详解】因为实数满足=1所以表示直线上点到原点的距离,故的最小值为原点到直线的距离,即,故的最小值为1.【题目点拨】本题考查点到点,点到直线的距离公式,此题的关键在于的最小值所表示的几何意义的识别.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)在中,由正弦定理得,,再结合在直角中,,然后求解即可;(2)由正弦定理及两角和的余弦可得,然后结合三角函数的有界性求解即可.【题目详解】解:(1)设,在中,由正弦定理得,,而在直角中,,所以,因为,所以,又因为,所以,所以,所以;(2)设,在中,由正弦定理得,,而在直角中,,所以,因为,所以,即,即,根据三角函数有界性得,及,解得,所以角D的最大值为.【题目点拨】本题考查了正弦定理,重点考查了三角函数的有界性,属中档题.18、(1)见解析;(2)见解析;(3)8.【解题分析】试题分析:(1)由勾股定理得,由面得到,从而得到面,故;(2)连接交于点,则为的中位线,得到∥,从而得到∥面;(3)过作垂足为,面,面积法求,求出三角形的面积,代入体积公式进行运算.试题解析:(1)证明:在中,由勾股定理得为直角三角形,即.又面,,,面,.(2)证明:设交于点,则为的中点,连接,则为的中位线,则在中,∥,又面,则∥面.(3)在中过作垂足为,由面⊥面知,面,.而,,.考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积.19、(1)(2)【解题分析】
(1)通过三角恒等变形,化简为的形式,方便我们去研究与其相关的任何问题;(2)恒成立,可转化,我们只需要求出最大值从而完成本题.【题目详解】(1)令得,所以的对称轴为(2)当时,,,因为,即恒成立故,解得【题目点拨】在研究三角函数相关的性质(值域、对称中心、对称轴、单调性……)我们都是将其化为(或者余弦、正切相对应)的形式,利用整体思想,我们能比较方便的去研究他们相关性质.20、(1);(2)元;(3)【解题分析】
(1)设事件表示“乙生产一件产品,盈利不小于25元”,即该产品的测试指标不小于80,由此能求出乙生产一件产品,盈利不小于25元的概率.(2)由表格知甲生产的一等品、二等品、三等品比例为即,所以甲一天生产30件产品,其中一等品有3件,二等品有21件,三等品有6件;由表格知乙生产的一等品、二等品、三等品比例为,所以乙一天生产20件产品,其中一等品有6件,二等品有12件,三等品有2件,由此能求出甲、乙两人一天共为企业创收1195元.(3)设甲测试指标为,的7件产品用,,,,,,表示,乙测试指标为,的7件产品用,表示,利用列举法能求出两件产品的测试指标差的绝对值大于10的概率.【题目详解】(1)设事件表示“乙生产一件产
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024水箱安全检测与销售服务合作协议3篇
- 2025年度销售合同终止及市场拓展合作管理协议2篇
- 个体工商户商铺租赁标准协议模板版A版
- 2024年度商铺离婚协议及企业经营权转让与风险分担合同3篇
- 二零二五年豪华二手车经销合作框架合同2篇
- 二零二五年砂石料买卖协议3篇
- 2024标准窗帘买卖合同样本版B版
- 二零二五版25MW柴油发电机电站发电设备安装调试服务协议3篇
- 西安明德理工学院《项目管理与案例分析》2023-2024学年第一学期期末试卷
- 2024版家政服务三方合同范本
- 心理学专业知识考试参考题库500题(含答案)(一)
- 2024年浙江高考技术试题(含答案)
- 资管行业投研一体化建设
- 提高保险公司客户投诉处理能力的整改措施
- 物业费收取协议书模板
- 电工(中级工)理论知识练习题(附参考答案)
- 工业设计概论试题
- 起重机的维护保养要求与月度、年度检查记录表
- 消防设施维护保养记录表
- 城区生活垃圾填埋场封场项目 投标方案(技术方案)
- 垃圾分类巡检督导方案
评论
0/150
提交评论