广东省佛山市禅城区2024届高一数学第二学期期末复习检测模拟试题含解析_第1页
广东省佛山市禅城区2024届高一数学第二学期期末复习检测模拟试题含解析_第2页
广东省佛山市禅城区2024届高一数学第二学期期末复习检测模拟试题含解析_第3页
广东省佛山市禅城区2024届高一数学第二学期期末复习检测模拟试题含解析_第4页
广东省佛山市禅城区2024届高一数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省佛山市禅城区2024届高一数学第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点且与直线垂直的直线方程是()A. B. C. D.2.一组数据中的每一个数据都乘以3,再减去30,得到一组新数据,若求得新数据的平均数是3.6,方差是9.9,则原来数据的平均数和方差分别是()A.11.2,1.1 B.33.6,9.9 C.11.2,9.9 D.24.1,1.13.若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”4.已知等差数列中,若,则取最小值时的()A.9 B.8 C.7 D.65.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度6.函数的零点所在的区间是().A. B. C. D.7.若两等差数列,前项和分別为,,满足,则的值为().A. B. C. D.8.已知,,,则它们的大小关系是()A. B. C. D.9.在边长为的正方形内有一个半径为1的圆,向正方形中随机扔一粒豆子(忽略大小,视为质点),若它落在该圆内的概率为,则用随机模拟的方法得到的圆周率的近似值为()A. B. C. D.10.已知等比数列,若,则()A. B. C.4 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆:,若对于圆:上任意一点,在圆上总存在点使得,则实数的取值范围为__________.12.函数的部分图像如图所示,则的值为________.13.在正四面体中,棱与所成角大小为________.14.若,且,则的最小值为_______.15.函数的最小正周期是________.16.下列命题中:①若,则的最大值为;②当时,;③的最小值为;④当且仅当均为正数时,恒成立.其中是真命题的是__________.(填上所有真命题的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面为平行四边形,点为中点,且.(1)证明:平面;(2)证明:平面平面.18.已知数列的前项和为,且2,,成等差数列.(1)求数列的通项公式;(2)若,求数列的前项和;19.已知圆心在轴的正半轴上,且半径为2的圆被直线截得的弦长为.(1)求圆的方程;(2)设动直线与圆交于两点,则在轴正半轴上是否存在定点,使得直线与直线关于轴对称?若存在,请求出点的坐标;若不存在,请说明理由.20.已知,且.(1)求的值;(2)求的值.21.在直角坐标系中,以坐标原点为圆心的圆与直线相切。求圆的方程;若圆上有两点关于直线对称,且,求直线的方程;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

由已知直线方程求得直线的斜率,再根据两直线垂直,得到所求直线的斜率,最后用点斜式写出所求直线的方程.【题目详解】已知直线的斜率为:因为两直线垂直所以所求直线的斜率为又所求直线过点所以所求直线方程为:即:故选:D【题目点拨】本题主要考查了直线与直线的位置关系及直线方程的求法,还考查了运算求解的能力,属于基础题.2、A【解题分析】

根据新数据所得的均值与方差,结合数据分析中的公式,即可求得原来数据的平均数和方差.【题目详解】设原数据为则新数据为所以由题意可知,则,解得,故选:A.【题目点拨】本题考查了数据处理与简单应用,平均数与方差公式的简单应用,属于基础题.3、A【解题分析】

根据不能同时发生的两个事件,叫互斥事件,依次判断.【题目详解】根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件;

故选A.【题目点拨】本题考查了互斥事件的定义.是基础题.4、C【解题分析】

是等差数列,先根据已知求出首项和公差,再表示出,由的最小值确定n。【题目详解】由题得,,解得,那么,当n=7时,取到最小值-49.故选:C【题目点拨】本题考查等差数列前n项和,是基础题。5、D【解题分析】

通过变形,通过“左加右减”即可得到答案.【题目详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【题目点拨】本题主要考查三角函数的平移变换,难度不大.6、C【解题分析】

因为原函数是增函数且连续,,所以根据函数零点存在定理得到零点在区间上,故选C.7、B【解题分析】解:因为两等差数列、前项和分别为、,满足,故,选B8、C【解题分析】因为,,故选C.9、A【解题分析】

通过几何概型可得答案.【题目详解】由几何概型可知,则.【题目点拨】本题主要考查几何概型的相关计算,难度中等.10、D【解题分析】

利用等比数列的通项公式求得公比,进而求得的值.【题目详解】∵,∴.故选:D.【题目点拨】本题考查等比数列通项公式,考查运算求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由,知为圆的切线,所以两圆外离,即圆心距大于两半径之和,代入方程即可。【题目详解】由,知为圆的切线,即在圆上任意一点都可以向圆作切线,当两圆外离时,满足条件,所以,,即,化简,得:,解得:或.【题目点拨】和圆半径所成夹角为,即是圆的切线,两圆外离表示圆心距大于两半径之和。12、【解题分析】

由图可得,,求出,得出,利用,然后化简即可求解【题目详解】由题图知,,所以,所以.由正弦函数的对称性知,所以答案:【题目点拨】本题利用函数的周期特性求解,难点在于通过图像求出函数的解析式和函数的最小正周期,属于基础题13、【解题分析】

根据正四面体的结构特征,取中点,连,,利用线面垂直的判定证得平面,进而得到,即可得到答案.【题目详解】如图所示,取中点,连,,正四面体是四个全等正三角形围成的空间封闭图形,所有棱长都相等,所以,,且,所以平面,又由平面,所以,所以棱与所成角为.【题目点拨】本题主要考查了异面直线所成角的求解,以及直线与平面垂直的判定及应用,着重考查了推理与论证能力,属于基础题.14、【解题分析】

将变换为,展开利用均值不等式得到答案.【题目详解】若,且,则时等号成立.故答案为【题目点拨】本题考查了均值不等式,“1”的代换是解题的关键.15、【解题分析】

根据函数的周期公式计算即可.【题目详解】函数的最小正周期是.故答案为【题目点拨】本题主要考查了正切函数周期公式的应用,属于基础题.16、①②【解题分析】

根据均值不等式依次判断每个选项的正误,得到答案.【题目详解】①若,则的最大值为,正确②当时,,时等号成立,正确③的最小值为,取错误④当且仅当均为正数时,恒成立均为负数时也成立.故答案为①②【题目点拨】本题考查了均值不等式,掌握一正二定三相等的具体含义是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析【解题分析】

(1)连接交于点,连接,可证,从而可证平面.(2)可证平面,从而得到平面平面.【题目详解】(1)连接交于点,连接,因为底面为平行四边形,所以为中点.在中,又为中点,所以.又平面,平面,所以平面.(2)因为底面为平行四边形,所以.又即,所以.又即.又平面,平面,,所以平面.又平面,所以平面平面.【题目点拨】线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法是平行投影或中心投影,我们也可以通过面面平行证线面平行,这个方法的关键是构造过已知直线的平面,证明该平面与已知平面平行.线面垂直的判定可由线线垂直得到,注意线线是相交的,也可由面面垂直得到,注意线在面内且线垂直于两个平面的交线.而面面垂直的证明可以通过线面垂直得到,也可以通过证明二面角是直二面角.18、(1);(2)【解题分析】

(1)利用求解;(2)由(1)知,,差比数列,利用错位相减法求其前n项和.【题目详解】(1)由题意知成等差数列,所以①,可得②①-②得,又,,所以数列是以2为首项,2为公比的等比数列,.(2)由(1)可得,用错位相减法得:①②①-②可得.【题目点拨】已知与的关系式利用公式求解错位相减法求等差乘等比数列的前n项和.19、(1)(2)当点为时,直线与直线关于轴对称,详见解析【解题分析】

(1)设圆的方程为,由垂径定理求得弦长,再由弦长为可求得,从而得圆的方程;(2)假设存在定点,使得直线与直线关于轴对称,则,同时设,直线方程代入圆方程后用韦达定理得,即为,代入可求得,说明存在.【题目详解】(1)设圆的方程为:圆心到直线的距离根据垂径定理得,,解得,,故圆的方程为(2)假设存在定点,使得直线与直线关于轴对称,那么,设联立得:由.故存在,当点为时,直线与直线关于轴对称.【题目点拨】本题考查圆的标准方程,考查直线与圆的位置关系.在解决存在性命题时,一般都是假设存在,然后根据已知去推理求解.象本题定点问题,就是假设存在定点,用设而不求法推理求解,解出值,如不能解出值,说明不存在.20、(1)(2)【解题分析】

(1)由即可求得;(2)可由的差角公式进行求解【题目详解】(1)由题可知,,,(2),又由前式可判

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论