2024届湖南G10教育联盟数学高一第二学期期末综合测试模拟试题含解析_第1页
2024届湖南G10教育联盟数学高一第二学期期末综合测试模拟试题含解析_第2页
2024届湖南G10教育联盟数学高一第二学期期末综合测试模拟试题含解析_第3页
2024届湖南G10教育联盟数学高一第二学期期末综合测试模拟试题含解析_第4页
2024届湖南G10教育联盟数学高一第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南G10教育联盟数学高一第二学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且,则是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角2.某学校从编号依次为01,02,…,72的72个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为12,21,则该样本中来自第四组的学生的编号为()A.30 B.31 C.32 D.333.设全集,集合,,则()A. B.C. D.4.已知函数的图象过点,且在上单调,同时的图象向左平移个单位之后与原来的图象重合,当,且时,,则A. B. C. D.5.如图,在等腰梯形中,,于点,则()A. B.C. D.6.已知向量a=(1,-1),bA.-1 B.0 C.1 D.27.若正实数x,y满足不等式,则的取值范围是()A. B. C. D.8.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数的部分图象大致是()A. B.C. D.9.在中,,点是内(包括边界)的一动点,且,则的最大值是()A. B. C. D.10.设函数的最大值为,最小值为,则与满足的关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的取值范围是_______;12.设数列的前项和为满足:,则_________.13.化简:________14.已知无穷等比数列的首项为,公比为q,且,则首项的取值范围是________.15.已知满足约束条件,则的最大值为__________.16.已知函数,,则的最大值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系xOy中,已知圆C:x2⑴若圆E的半径为2,圆E与x轴相切且与圆C外切,求圆E的标准方程;⑵若过原点O的直线l与圆C相交于A,B两点,且OA=AB,求直线l的方程.18.已知边长为2的等边,是边的中点,以为旋转中心,逆时针旋转得对应,与所在直线交于.(1)任意旋转角,判断是否是定值.若是,求此定值;若不是,说明理由.(2)求的最小值.19.已知等比数列为递增数列,,,数列满足.(1)求数列的通项公式;(2)求数列的前项和.20.设矩形的周长为,把沿向折叠,折过去后交于,设,的面积为.(1)求的解析式及定义域;(2)求的最大值.21.已知正项数列,满足:对任意正整数,都有,,成等差数列,,,成等比数列,且,.(Ⅰ)求证:数列是等差数列;(Ⅱ)求数列,的通项公式;(Ⅲ)设=++…+,如果对任意的正整数,不等式恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】,则的终边在三、四象限;则的终边在三、一象限,,,同时满足,则的终边在三象限.2、A【解题分析】

根据相邻的两个组的编号确定组矩,即可得解.【题目详解】由题:样本中相邻的两个组的编号分别为12,21,所以组矩为9,则第一组所取学生的编号为3,第四组所取学生的编号为30.故选:A【题目点拨】此题考查系统抽样,关键在于根据系统抽样方法确定组矩,依次求得每组选取的编号.3、A【解题分析】

进行交集、补集的运算即可.【题目详解】∁UB={x|﹣2<x<1};∴A∩(∁UB)={x|﹣1<x<1}.故选:A.【题目点拨】考查描述法的定义,以及交集、补集的运算.4、A【解题分析】由题设可知该函数的周期是,则过点且可得,故,由可得,所以由可得,注意到,故,所以,应选答案A点睛:已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.5、A【解题分析】

根据等腰三角形的性质可得是的中点,由平面向量的加法运算法则结合向量平行的性质可得结果.【题目详解】因为,所以是的中点,可得,故选.【题目点拨】本题主要考查向量的几何运算以及向量平行的性质,属于简单题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)6、C【解题分析】

由向量的坐标运算表示2a【题目详解】解:因为a=(1,-1),b=(-1,2故选C.【题目点拨】本题考查了向量的加法和数量积的坐标运算;属于基础题目.7、B【解题分析】

试题分析:由正实数满足不等式,得到如下图阴影所示的区域:当过点时,,当过点时,,所以的取值范围是.考点:线性规划问题.8、D【解题分析】

根据函数的性质以及特殊位置即可利用排除法选出正确答案.【题目详解】因为函数定义域为,关于原点对称,而,所以函数为奇函数,其图象关于原点对称,故排除A,C;又因为,故排除B.故选:D.【题目点拨】本题主要考查函数图象的识别,涉及余弦函数性质的应用,属于基础题.9、B【解题分析】

根据分析得出点的轨迹为线段,结合图形即可得到的最大值.【题目详解】如图:取,,,点是内(包括边界)的一动点,且,根据平行四边形法则,点的轨迹为线段,则的最大值是,在中,,,,,故选:B【题目点拨】此题考查利用向量方法解决平面几何中的线段长度最值问题,数形结合处理可以避免纯粹的计算,降低难度.10、B【解题分析】

将函数化为一个常数函数与一个奇函数的和,再利用奇函数的对称性可得答案.【题目详解】因为,令,则,所以为奇函数,所以,所以,故选:B【题目点拨】本题考查了两角差的余弦公式,考查了奇函数的对称性的应用,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

本题首先可以根据向量的运算得出,然后等式两边同时平方并化简,得出,最后根据即可得出的取值范围.【题目详解】设向量与向量的夹角为,因为,所以,即,因为,所以,即,所以的取值范围是.【题目点拨】本题考查向量的运算以及向量的数量积的相关性质,向量的数量积公式,考查计算能力,是简单题.12、【解题分析】

利用,求得关于的递推关系式,利用配凑法证得是等比数列,由此求得数列的通项公式,进而求得的表达式,从而求得的值.【题目详解】当时,.由于,而,故,故答案为:.【题目点拨】本小题主要考查配凑法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.13、【解题分析】

根据三角函数的诱导公式,准确运算,即可求解.【题目详解】由题意,可得.故答案为:.【题目点拨】本题主要考查了三角函数的诱导公式的化简、求值问题,其中解答中熟记三角函数的诱导公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.14、【解题分析】

根据极限存在得出,对分、和三种情况讨论得出与之间的关系,可得出的取值范围.【题目详解】由于,则.①当时,则,;②当时,则,;③当时,,解得.综上所述:首项的取值范围是,故答案为:.【题目点拨】本题考查极限的应用,要结合极限的定义得出公比的取值范围,同时要对公比的取值范围进行分类讨论,考查分类讨论思想的应用,属于中等题.15、57【解题分析】

作出不等式组所表示的可行域,平移直线,观察直线在轴的截距取最大值时的最优解,再将最优解代入目标函数可得出目标函数的最大值.【题目详解】作出不等式组所表示的可行域如下图所示:平移直线,当直线经过可行域的顶点时,该直线在轴上的截距取最大值,此时,取最大值,即,故答案为.【题目点拨】本题考查简单的线性规划问题,考查线性目标函数的最值问题,一般利用平移直线结合在坐标轴上的截距取最值时,找最优解求解,考查数形结合数学思想,属于中等题.16、3【解题分析】函数在上为减函数,故最大值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(x+3)2+(y-2)2【解题分析】

(1)设出圆E的标准方程为(x-a)2+(y-b)2=r2,由圆E与x轴相切,可得b=r,由圆E与圆C外切,可得两圆心距等于半径之和,由此解出(2)法一:设出A点坐标为(x0,y0),根据OA=AB,可得到点B坐标,把A、B两点坐标代入圆法二:设AB的中点为M,连结CM,CA,设出直线l的方程,由题求出CM的长,利用点到直线的距离即可得求出k值,从而得到直线l的方程【题目详解】⑴设圆E的标准方程为(x-a)2+(y-b)2=r2因为圆E的半径为2,与x轴相切,所以b=2因为圆E与圆C外切所以EC=3,即a由①②解得a=±3,b=2故圆E的标准方程为(x+3)2+⑵方法一;设A(因为OA=AB,所以A为OB的中点,从而B(2因为A,B都在圆C上所以x解得x0=-故直线l的方程为:y=±方法二:设AB的中点为M,连结CM,CA设AM=t,CM=d因为OA=AB,所以OM=3t在RtΔACM中,d2在RtΔOCM中,d2由③④解得d=由题可知直线l的斜率一定存在,设直线l的方程为y=kx则d=2k故直线l的方程为y=±【题目点拨】本题考查圆的标准方程与直线方程,解题关键是设出方程,找出关系式,属于中档题。18、(1)是,0;(2).【解题分析】

(1)以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系,得出的坐标,计算得出,进而得出;(2)根据得出点的轨迹是以为直径的圆,由圆的对称性得出的最小值.【题目详解】(1)以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系则,即∴设,则所以为定值,定值为(2)由(1)知,故在以为直径的圆上设的中点,则,以为直径的圆的半径由圆的对称性可知,的最小值是.【题目点拨】本题主要考查了计算向量的数量积以及圆对称性的应用,属于中档题.19、(1)(2)【解题分析】

(1)利用等比数列的下标性质,可以由,得到,通过解方程组,结合已知可以求出的值,这样可以求出公比,最后可以求出等比数列的通项公式,最后利用对数的运算性质可以求出数列的通项公式;(2)利用错位相消法可以求出数列的前项和.【题目详解】解(1)∵是等比数列∴又∵由是递增数列解得,且公比∴(2),两式相减得:∴【题目点拨】本题考查了等比数列下标的性质,考查了求等比数列通项公式,考查了对数运算的性质,考查了错位相消法,考查了数学运算能力.20、(1)(2)的最大值为.【解题分析】

(1)利用周长,可以求出的长,利用平面几何的知识可得,再利用勾股定理,可以求出的值,由矩形的周长为,可求出的取值范围,最后利用三角形面积公式求出的解析式;(2)化简(1)的解析式,利用基本不等式,可以求出的最大值.【题目详解】(1)如下图所示:∵设,则,又,即,∴,得,∵,∴,∴的面积.(2)由(1)可得,,当且仅当,即时取等号,∴的最大值为,此时.【题目点拨】本题考查了求函数解析式,考查了基本不等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论