山东省日照市莒县、岚山2024届高一数学第二学期期末达标检测试题含解析_第1页
山东省日照市莒县、岚山2024届高一数学第二学期期末达标检测试题含解析_第2页
山东省日照市莒县、岚山2024届高一数学第二学期期末达标检测试题含解析_第3页
山东省日照市莒县、岚山2024届高一数学第二学期期末达标检测试题含解析_第4页
山东省日照市莒县、岚山2024届高一数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省日照市莒县、岚山2024届高一数学第二学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在三棱柱中,平面,,,,E,F分别是,上的点,则三棱锥的体积为()A.6 B.12 C.24 D.362.已知,则().A. B. C. D.3.定义运算,设,若,,,则的值域为()A. B. C. D.4.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.函数的部分图像如图所示,则的值为()A.1 B.4 C.6 D.76.在集合且中任取一个元素,所取元素x恰好满足方程的概率是()A. B. C. D.7.设是等比数列,则“”是“数列是递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.在中,,则这个三角形的形状为()A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形9.若正实数x,y满足不等式,则的取值范围是()A. B. C. D.10.某产品的广告费用x与销售额y的统计数据如下表:广告费用(万元)

4

2

3

5

销售额(万元)

49

26

39

54

根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元二、填空题:本大题共6小题,每小题5分,共30分。11.在数列中,,则______________.12.67是等差数列-5,1,7,13,……中第项,则___________________.13.在中,内角,,所对的边分别为,,,,且,则面积的最大值为______.14.若点在幂函数的图像上,则函数的反函数=________.15.在平面直角坐标系中,已知圆:,圆:,动点在直线:上(),过分别作圆,的切线,切点分别为,,若满足的点有且只有一个,则实数的值为______.16.已知数列从第项起每项都是它前面各项的和,且,则的通项公式是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知△ABC中,A(1,﹣4),B(6,6),C(﹣2,0).求(1)过点A且平行于BC边的直线的方程;(2)BC边的中线所在直线的方程.18.已知数列是等差数列,是其前项和.(1)求数列的通项公式;(2)设,求数列的前项和.19.已知函数.(1)求函数的最小正周期和值域;(2)设为的三个内角,若,,求的值.20.设二次函数.(1)若对任意实数,恒成立,求实数x的取值范围;(2)若存在,使得成立,求实数m的取值范围.21.某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)万件与年促销费用万元,满足(为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润(万元)表示为年促销费用(万元)的函数;(2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

等体积法:.求出的面积和F到平面的距离,代入公式即可.【题目详解】由题意可得,的面积为,因为,,平面ABC,所以点C到平面的距离为,即点F到平面的距离为4,则三棱锥的体积为.故三棱锥的体积为12.【题目点拨】此题考察了三棱锥体积的等体积法,通过变化顶点和底面进行转化,属于较易题目.2、C【解题分析】

分子分母同时除以,利用同角三角函数的商关系化简求值即可.【题目详解】因为,所以,于是有,故本题选C.【题目点拨】本题考查了同角三角函数的商关系,考查了数学运算能力.3、C【解题分析】

由题意,由于与都是周期函数,且最小正周期都是,故只须在一个周期上考虑函数的值域即可,分别画出与的图象,如图所示,观察图象可得:的值域为,故选C.4、A【解题分析】

根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【题目详解】当m⊥平面α时,若l∥α”则“l⊥m”成立,即充分性成立,若l⊥m,则l∥α或l⊂α,即必要性不成立,则“l∥α”是“l⊥m”充分不必要条件,故选:A.【题目点拨】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题5、C【解题分析】

根据是零点以及的纵坐标值,求解出的坐标值,然后进行数量积计算.【题目详解】令,且是第一个零点,则;令,是轴右侧第一个周期内的点,所以,则;则,,则.选C.【题目点拨】本题考查正切型函数以及坐标形式下向量数量积的计算,难度较易.当已知,则有.6、B【解题分析】

写出集合中的元素,分别判断是否满足即可得解.【题目详解】集合且的元素,,,,,,.基本事件总数为,满足方程的基本事件数为.故所求概率.故选:B.【题目点拨】本题考查了古典概型概率的求解,属于基础题.7、B【解题分析】

由,可得,解得或,根据等比数列的单调性的判定方法,结合充分、必要条件的判定方法,即可求解,得到答案.【题目详解】设等比数列的公比为,则,可得,解得或,此时数列不一定是递增数列;若数列为递增数列,可得或,所以“”是“数列为递增数列”的必要不充分条件.故选:B.【题目点拨】本题主要考查了等比数列的通项公式与单调性,以及充分条件、必要条件的判定,其中解答中熟记等比数列的单调性的判定方法是解答本题的关键,着重考查了推理与运算能力,属于基础题.8、B【解题分析】解:9、B【解题分析】

试题分析:由正实数满足不等式,得到如下图阴影所示的区域:当过点时,,当过点时,,所以的取值范围是.考点:线性规划问题.10、B【解题分析】

试题分析:,∵数据的样本中心点在线性回归直线上,回归方程中的为1.4,∴42=1.4×2.5+a,∴=1.1,∴线性回归方程是y=1.4x+1.1,∴广告费用为6万元时销售额为1.4×6+1.1=3.5考点:线性回归方程二、填空题:本大题共6小题,每小题5分,共30分。11、20【解题分析】

首先根据已知得到:是等差数列,公差,再计算即可.【题目详解】因为,所以数列是等差数列,公差..故答案为:【题目点拨】本题主要考查等差数列的判断和等差数列项的求法,属于简单题.12、13【解题分析】

根据数列写出等差数列通项公式,再令算出即可.【题目详解】由题意,首项为-5,公差为,则等差数列通项公式,令,则故答案为:13.【题目点拨】等差数列首项为公差为,则通项公式13、【解题分析】

根据正弦定理将转化为,即,由余弦定理得,再用基本不等式法求得,根据面积公式求解.【题目详解】根据正弦定理可转化为,化简得由余弦定理得因为所以,当且仅当时取所以则面积的最大值为.故答案为:【题目点拨】本题主要考查正弦定理,余弦定理,基本不等式的综合应用,还考查了运算求解的能力,属于中档题.14、【解题分析】

根据函数经过点求出幂函数的解析式,利用反函数的求法,即可求解.【题目详解】因为点在幂函数的图象上,所以,解得,所以幂函数的解析式为,则,所以原函数的反函数为.故答案为:【题目点拨】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.15、.【解题分析】

根据圆的切线的性质和三角形全等,得到,求得点的轨迹方程,再根据直线与圆相切,利用圆心到直线的距离等于半径,即可求解.【题目详解】由题意得:,,设,如下图所示∵PA、PB分别是圆O,O1的切线,∴∠PBO1=∠PAO=90°,又∵PB=2PA,BO1=2AO,∴△PBO1∽△PAO,∴,∴,∴,整理得,∴点P(x,y)的轨迹是以为圆心、半径等于的圆,∵动点P在直线:上(),满足PB=2PA的点P有且只有一个,∴该直线l与圆相切,∴圆心到直线l的距离d满足,即,解得或,又因为,所以.【题目点拨】本题主要考查了圆的切线的性质,以及直线与圆的位置关系的应用,其中解答中根据圆的切下的性质和三角形全等求得点的轨迹方程,再根据直线与圆相切,列出方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.16、【解题分析】

列举,可找到是从第项起的等比数列,由首项和公比即可得出通项公式.【题目详解】解:,即,所以是从第项起首项,公比的等比数列.通项公式为:故答案为:【题目点拨】本题考查数列的通项公式,可根据递推公式求出.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3x﹣4y﹣19=1(2)7x﹣y﹣11=1【解题分析】

(1)先求出BC的斜率,再用点斜式求出过点A且平行于BC边的直线方程;

(2)先求出BC的中点为D的坐标,再用两点式求出直线AD的方程.【题目详解】(1)△ABC中,∵A(1,﹣4),B(6,6),C(﹣2,1),故BC的斜率为,故过点A且平行于BC边的直线的方程为y+4(x﹣1),即3x﹣4y﹣19=1.(2)BC的中点为D(2,3),由两点式求出BC边的中线所在直线AD的方程为,即7x﹣y﹣11=1.【题目点拨】本题主要考查直线的斜率公式,用点斜式、两点式求直线的方程,属于基础题.18、(1)(2)【解题分析】试题分析:(1)将已知条件转化为首项和公差表示,解方程组可求得基本量的值,从而确定通项公式;(2)首先化简数列的通项公式,结合特点采用分组求和法求解试题解析:(1)∵数列是等差数列,是其前项和,.∴,解得,∴.(2)∵,考点:数列求通项公式及数列求和19、(1)周期,值域为;(2).【解题分析】

(1)利用二倍角降幂公式与辅助角公式将函数的解析式进行化简,利用周期公式求出函数的最小正周期,并求出函数的值域;(2)先由的值,求出角的值,然后由结合同角三角函数的基本关系以及两角和的余弦公式求出的值.【题目详解】(1)∵且,∴所求周期,值域为;(2)∵是的三个内角,,∴∴又,即,又∵,故,故.【题目点拨】本题考查三角函数与解三角形的综合问题,考查三角函数的基本性质以及三角形中的求值问题,求解三角函数的问题时,要将三角函数解析式进行化简,结合正余弦函数的基本性质求解,考查分析问题的能力和计算能力,属于中等题.20、(1)(2)【解题分析】

(1)是关于m的一次函数,计算得到答案.(2)易知,讨论和两种情况计算得到答案.【题目详解】(1)对任意实数,恒成立,即对任意实数恒成立,是关于m的一次函数,,解得或,所以实数x的取值范围是.(2)存在,使得成立,即,显然.(i)当时,要使成立,即需成立,即需成立.,(当且仅当时等号成立),,.(ii)当时,要使成立,即需成立,即需成立,,(当且仅当时等号成立),.综上得实数m的取值范围是.【题目点拨】本题考查了恒成立问题和存在性问题,意在考查学生的综合应用能力.21、(1);(2)厂家2020年的促销费用投入3万元时,厂家的利润最大,为21万元.【解题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论