山东省桓台第一中学2024届高一数学第二学期期末检测试题含解析_第1页
山东省桓台第一中学2024届高一数学第二学期期末检测试题含解析_第2页
山东省桓台第一中学2024届高一数学第二学期期末检测试题含解析_第3页
山东省桓台第一中学2024届高一数学第二学期期末检测试题含解析_第4页
山东省桓台第一中学2024届高一数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省桓台第一中学2024届高一数学第二学期期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若是函数的两个不同的零点,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值等于()A.1 B.5 C.9 D.42.已知三棱柱()A. B. C. D.3.设的内角所对的边分别为,且,已知的面积等于,,则的值为()A. B. C. D.4.设正项等比数列的前项和为,若,,则公比()A. B. C. D.5.若,,则的终边所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限6.已知扇形的面积为2cm2,扇形圆心角θ的弧度数是4,则扇形的周长为()A.2cm B.4cm C.6cm D.8cm7.如图,网格纸的小正方形的边长是,在其上用粗实线和粗虚线画出了某几何体的三视图,则该几何体的体积是()A. B. C. D.8.我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为A.分 B.分 C.分 D.分9.已知为不同的平面,为不同的直线则下列选项正确的是()A.若,则 B.若,则C.若,则 D.若,则10.数列,通项公式为,若此数列为递增数列,则的取值范围是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为.12.如图所示为函数的部分图像,其中、分别是函数图像的最高点和最低点,且,那么________.13.在平面直角坐标系xOy中,若直线与直线平行,则实数a的值为______.14.函数的最小值是.15.设变量满足条件,则的最小值为___________16.已知,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,已知,是边上的一点,,,.(1)求的大小;(2)求的长.18.眉山市位于四川西南,有“千载诗书城,人文第一州”的美誉,这里是大文豪苏轼、苏洵、苏辙的故乡,也是人们旅游的好地方.在今年的国庆黄金周,为了丰富游客的文化生活,每天在东坡故里三苏祠举行“三苏文化”知识竞赛.已知甲、乙两队参赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,,,且各人回答正确与否相互之间没有影响.(1)分别求甲队总得分为0分;2分的概率;(2)求甲队得2分乙队得1分的概率.19.如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点.(1)求证:AE⊥B1C;(2)求异面直线AE与A1C所成的角的大小;(3)若G为C1C中点,求二面角C-AG-E的正切值.20.已知数列,.(1)若数列是等比数列,且,求数列的通项公式;(2)若数列是等差数列,且,数列满足,当时,求的值.21.如图,圆锥中,是圆的直径,是底面圆上一点,且,点为半径的中点,连.(Ⅰ)求证:平面;(Ⅱ)当是边长为4的正三角形时,求点到平面的距离.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】试题分析:由韦达定理得,,则,当适当排序后成等比数列时,必为等比中项,故,.当适当排序后成等差数列时,必不是等差中项,当是等差中项时,,解得,;当是等差中项时,,解得,,综上所述,,所以.考点:等差中项和等比中项.2、C【解题分析】因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=3、D【解题分析】

由正弦定理化简已知,结合,可求,利用同角三角函数基本关系式可求,进而利用三角形的面积公式即可解得的值.【题目详解】解:,由正弦定理可得,,,即,,解得:或(舍去),的面积,解得.故选:.【题目点拨】本题主要考查了正弦定理,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.4、D【解题分析】

根据题意,求得,结合,即可求解,得到答案.【题目详解】由题意,正项等比数列满足,,即,,所以,又由,因为,所以.故选:D.【题目点拨】本题主要考查了的等比数列的通项公式,以及等比数列的前n项和公式的应用,其中解答中熟记等比数列的通项公式,以及等比数列的前n项和公式,合理运算是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解题分析】由一全正二正弦三正切四余弦可得的终边所在的象限为第二象限,故选B.考点:三角函数6、C【解题分析】设扇形的半径为R,则R2θ=2,∴R2=1R=1,∴扇形的周长为2R+θ·R=2+4=6(cm).7、A【解题分析】

根据三视图,还原空间结构体,根据空间结构体的特征及球、棱锥的体积公式求得总体积.【题目详解】根据空间结构体的三视图,得原空间结构体如下图所示:该几何体是由下面半球的和上面四棱锥的组成由三视图的棱长及半径关系,可得几何体的体积为所以选A【题目点拨】本题考查了三视图的简单应用,空间结构体的体积求法,属于中档题.8、B【解题分析】

首先“冬至”时日影长度最大,为1350分,“夏至”时日影长度最小,为160分,即可求出,进而求出立春”时日影长度为.【题目详解】解:一年有二十四个节气,每相邻两个节气之间的日影长度差为分,且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分.,解得,“立春”时日影长度为:分.故选B.【题目点拨】本题考查等差数列的性质等基础知识,考查运算求解能力,利用等差数列的性质直接求解.9、C【解题分析】

通过对ABCD逐一判断,利用点线面的位置关系即可得到答案.【题目详解】对于A选项,有可能异面,故错误;对于B选项,可能相交或异面,故错误;对于C选项,,显然故正确;对于D选项,也有可能,故错误.所以答案选C.【题目点拨】本题主要考查直线与平面的位置关系,意在考查学生的空间想象能力,难度不大.10、B【解题分析】因为的对称轴为,因为此数列为递增数列,所以.二、填空题:本大题共6小题,每小题5分,共30分。11、70【解题分析】设高一、高二抽取的人数分别为,则,解得.【考点】分层抽样.12、【解题分析】

由图可知:,因为,由周期公式得到,结合以及诱导公式即可求解.【题目详解】由图可知:,因为所以,即由题意可知:,即故答案为:【题目点拨】本题主要考查了正弦型函数的图像的性质以及求值,关键是从图像得出周期,最值等,属于基础题.13、1【解题分析】

由,解得,经过验证即可得出.【题目详解】由,解得.经过验证可得:满足直线与直线平行,则实数.故答案为:1.【题目点拨】本题考查直线的平行与斜率之间的关系,考查推理能力与计算能力,属于基础题.14、3【解题分析】试题分析:考点:基本不等式.15、-1【解题分析】

根据线性规划的基本方法求解即可.【题目详解】画出可行域有:因为.根据当直线纵截距最大时,取得最小值.由图易得在处取得最小值.故答案为:【题目点拨】本题主要考查了线性规划的基本运用,属于基础题.16、【解题分析】

利用同角三角函数的基本关系将弦化切,再代入计算可得.【题目详解】解:,故答案为:【题目点拨】本题考查同角三角函数的基本关系,齐次式的计算,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】试题分析:(1)在中,由余弦定理得,最后根据的值及,即可得到的值;(2)在中,由正弦定理得到,从而代入数据进行运算即可得到的长.试题解析:(1)在中,,由余弦定理可得又因为,所以(2)在中,由正弦定理可得所以.考点:1.正弦定理;2.余弦定理;3.解斜三角形.18、(1)0分概率;2分概率;(2)【解题分析】

(1)记“甲队总得分为0分”为事件,“甲队总得分为2分”为事件,分析可知A事件三人都没有答对,按相互独立事件同时发生计算概率,B事件即甲队三人中有1人答错,其余两人答对,由n次独立事件恰有k次发生计算即可(2)记“乙队得1分”为事件,“甲队得2分乙队得1分”为事件,分别有互斥事件概率加法公式及相互独立事件乘法公式计算即可.【题目详解】(1)记“甲队总得分为0分”为事件,“甲队总得分为2分”为事件,甲队总得分为0分,即甲队三人都回答错误,其概率;甲队总得分为2分,即甲队三人中有1人答错,其余两人答对,其概率;(2)记“乙队得1分”为事件,“甲队得2分乙队得1分”为事件;事件即乙队三人中有2人答错,其余1人答对,则,甲队得2分乙队得1分即事件、同时发生,则.【题目点拨】本题主要考查了相互独立事件的概率计算,涉及n次独立事件中恰有k次发生的概率公式的应用,互斥事件的概率加法公式,属于中档题.19、(1)见解析;(2);(3)【解题分析】

(1)由BB1⊥面ABC及线面垂直的性质可得AE⊥BB1,由AC=AB,E是BC的中点,及等腰三角形三线合一,可得AE⊥BC,结合线面垂直的判定定理可证得AE⊥面BB1C1C,进而由线面垂直的性质得到AE⊥B1C;(2)取B1C1的中点E1,连A1E1,E1C,根据异面直线夹角定义可得,∠E1A1C是异面直线A与A1C所成的角,设AC=AB=AA1=2,解三角形E1A1C可得答案.(3)连接AG,设P是AC的中点,过点P作PQ⊥AG于Q,连EP,EQ,则EP⊥AC,由直三棱锥的侧面与底面垂直,结合面面垂直的性质定理,可得EP⊥平面ACC1A1,进而由二面角的定义可得∠PQE是二面角C-AG-E的平面角.【题目详解】证明:(1)因为BB1⊥面ABC,AE⊂面ABC,所以AE⊥BB1由AB=AC,E为BC的中点得到AE⊥BC∵BC∩BB1=B∴AE⊥面BB1C1C∴AE⊥B1C解:(2)取B1C1的中点E1,连A1E1,E1C,则AE∥A1E1,∴∠E1A1C是异面直线AE与A1C所成的角.设AC=AB=AA1=2,则由∠BAC=90°,可得A1E1=AE=,A1C=2,E1C1=EC=BC=∴E1C==∵在△E1A1C中,cos∠E1A1C==所以异面直线AE与A1C所成的角为.(3)连接AG,设P是AC的中点,过点P作PQ⊥AG于Q,连EP,EQ,则EP⊥AC又∵平面ABC⊥平面ACC1A1∴EP⊥平面ACC1A1而PQ⊥AG∴EQ⊥AG.∴∠PQE是二面角C-AG-E的平面角.由EP=1,AP=1,PQ=,得tan∠PQE==所以二面角C-AG-E的平面角正切值是【题目点拨】本题是与二面角有关的立体几何综合题,主要考查了异面直线的夹角,线线垂直的判定,二面角等知识点,难度中档,熟练掌握线面垂直,线线垂直与面面垂直之间的转化及异面直线夹角及二面角的定义,是解答本题的关键.20、(1);(2).【解题分析】

(1)数列是公比为的等比数列,由等比数列的通项公式解方程可得首项和公比,即可得到所求通项;(2)数列是公差为的等差数列,由等差数列的通项公式解方程可得首项和公差,可得数列的通项,进而得到,再由指数的运算性质和等差数列的求和公式,计算即可得到所求值.【题目详解】解:(1)数列是公比为的等比数列,,,可得,,解得,,可得,;(2)数列是公差为的等差数列,,,可得,,解得,,则,,,即可得,可得,解得或(舍去).【题目点拨】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于中档题.21、(Ⅰ)见证明;(Ⅱ)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论