河北省石家庄栾城中学2024届高一数学第二学期期末统考试题含解析_第1页
河北省石家庄栾城中学2024届高一数学第二学期期末统考试题含解析_第2页
河北省石家庄栾城中学2024届高一数学第二学期期末统考试题含解析_第3页
河北省石家庄栾城中学2024届高一数学第二学期期末统考试题含解析_第4页
河北省石家庄栾城中学2024届高一数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省石家庄栾城中学2024届高一数学第二学期期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的偶函数,且在上递增,那么一定有()A. B.C. D.2.设集合,,若,则的取值范围是()A. B. C. D.3.为了得到函数的图象,只需把函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度4.下列命题中正确的是()A.第一象限角必是锐角; B.相等的角终边必相同;C.终边相同的角相等; D.不相等的角其终边必不相同.5.在下列结论中,正确的为()A.两个有共同起点的单位向量,其终点必相同B.向量与向量的长度相等C.向量就是有向线段D.零向量是没有方向的6.若实数x,y满足,则z=x+y的最小值为()A.2 B.3 C.4 D.57.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=A. B. C.2 D.38.在数列中,,则数列的前n项和的最大值是()A.136 B.140 C.144 D.1489.在△ABC中,点D在边BC上,若,则A.+ B.+ C.+ D.+10.已知在三角形中,,点都在同一个球面上,此球面球心到平面的距离为,点是线段的中点,则点到平面的距离是()A. B. C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.若则的最小值是__________.12.数列的前项和,则的通项公式_____.13.在《九章算术·商功》中将四个面均为直角三角形的三棱锥称为鳖臑(biēnào),在如下图所示的鳖臑中,,,,则的直角顶点为______.14.若,,,则M与N的大小关系为___________.15.不等式的解集为_________.16.中,,,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数,其中向量,.(1)求函数的最小正周期与单调递减区间;(2)在中,、、分别是角、、的对边,已知,,的面积为,求外接圆半径.18.某中学高二年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是1.(1)求出x,y的值,且分别求甲、乙两个班中5名学生成绩的方差、,并根据结果,你认为应该选派哪一个班的学生参加决赛?(2)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.19.已知,函数.(1)当时,解不等式;(2)若对,不等式恒成立,求a的取值范围.20.在国内汽车市场中,国产SUV出现了持续不退的销售热潮,2018年国产SUV销量排行榜完整版已经出炉,某品牌车型以惊人的销量成绩击退了所有虎视眈眈的对手,再次霸气登顶,下面是该品牌国产SUV分别在2017年与2018年7~11月份的销售量对比表时间7月8月9月10月11月2017年(单位:万辆)2.83.93.54.45.42018年(单位:万辆)3.83.94.54.95.4(Ⅰ)若从7月至11月中任选两个月份,求至少有一个月份这两年该国产品牌SUV销量相同的概率.(Ⅱ)分别求这两年7月至11月的销售数据的平均数,并直接判断哪年的销售量比较稳定.21.已知集合.(Ⅰ)求;(Ⅱ)若集合,写出集合的所有子集.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

根据题意,结合,可知,再利用偶函数的性质即可得出结论.【题目详解】是定义在上的偶函数,,在上递增,,即,故选:D.【题目点拨】本题考查函数奇偶性与单调性的简单应用,判断出是解题关键.2、A【解题分析】因为,,且,即,所以.故选A.3、A【解题分析】

根据,因此只需把函数的图象向左平移个单位长度.【题目详解】因为,所以只需把函数的图象向左平移个单位长度即可得,选A.【题目点拨】本题主要考查就三角函数的变换,左加右减只针对,属于基础题.4、B【解题分析】

根据终边相同的角和象限角的定义,举反例或直接进行判断可得最后结果.【题目详解】是第一象限角,但不是锐角,故A错误;与终边相同,但他们不相等,故C错误;与不相等,但他们的终边相同,故D错误;因为角的始边在x轴的非负半轴上,则相等的角终边必相同,故B正确.故选:B【题目点拨】本题考查了终边相同的角和象限角的定义,利用定义举出反例进行判断是解决本题的关键.5、B【解题分析】

逐一分析选项,得到答案.【题目详解】A.单位向量的方向任意,所以当起点相同时,终点在以起点为圆心的单位圆上,终点不一定相同,所以选项不正确;B.向量与向量是相反向量,方向相反,长度相等,所以选项正确;C.向量是既有大小,又有方向的向量,可以用有向线段表示,但不能说向量就是有向线段,所以选项不正确;D.规定零向量的方向任意,而不是没有方向,所以选项不正确.故选B.【题目点拨】本题考查了向量的基本概念,属于基础题型.6、D【解题分析】

由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【题目详解】由实数,满足作出可行域,如图:联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,此时有最小值为.故选:D.【题目点拨】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.7、D【解题分析】

由余弦定理得,解得(舍去),故选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!8、C【解题分析】

可得数列为等差数列且前8项为正数,第9项为0,从第10项开始为负数,可得前8或9项和最大,由求和公式计算可得.【题目详解】解:∵在数列中,,

,即数列为公差为−4的等差数列,

令可得,

∴递减的等差数列中前8项为正数,第9项为0,从第10项开始为负数,

∴数列的前8或9项和最大,

由求和公式可得

故选:C.【题目点拨】本题考查等差数列的求和公式和等差数列的判定,属基础题.9、C【解题分析】

根据向量减法和用表示,再根据向量加法用表示.【题目详解】如图:因为,所以,故选C.【题目点拨】本题考查向量几何运算的加减法,结合图形求解.10、D【解题分析】

利用数形结合,计算球的半径,可得半径为2,进一步可得该几何体为正四面体,可得结果.【题目详解】如图据题意可知:点都在同一个球面上可知为的外心,故球心必在过且垂直平面的垂线上因为,所以球心到平面的距离为即,又所以同理可知:所以该几何体为正四面体,由点是线段的中点所以,且平面,故平面所以点到平面的距离是故选:D【题目点拨】本题考查空间几何体的应用,以及点到面的距离,本题难点在于得到该几何体为正四面体,属中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据对数相等得到,利用基本不等式求解的最小值得到所求结果.【题目详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【题目点拨】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.12、【解题分析】

根据和之间的关系,应用公式得出结果【题目详解】当时,;当时,;∴故答案为【题目点拨】本题考查了和之间的关系式,注意当和时要分开讨论,题中的数列非等差数列.本题属于基础题13、【解题分析】

根据,可得平面,进而可得,再由,证明平面,即可得出,是的直角顶点.【题目详解】在三棱锥中,,,且,∴平面,又平面,∴,又∵,且,∴平面,又平面,∴,∴的直角顶点为.故答案为:.【题目点拨】本题考查了直线与直线以及直线与平面垂直的应用问题,属于基础题.14、【解题分析】

根据自变量的取值范围,利用作差法即可比较大小.【题目详解】,,,所以当时,所以,即,故答案为:.【题目点拨】本题考查了作差法比较整式的大小,属于基础题.15、【解题分析】

利用两个数的商是正数等价于两个数同号;将已知的分式不等式转化为整式不等式,求出解集.【题目详解】同解于解得或故答案为:【题目点拨】本题考查解分式不等式,利用等价变形转化为整式不等式是解题的关键.16、【解题分析】

根据,得到的值,再由余弦定理,得到的值.【题目详解】因为,所以,在中,,,由余弦定理得.所以.故答案为:【题目点拨】本题考查二倍角的余弦公式,余弦定理解三角形,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),的单调递减区间是;(2).【解题分析】试题分析:(1)用坐标表示向量条件,代入函数解析式中,运用向量的坐标运算法则求出函数解析式并应用二倍角公式以及两角和的正弦公式化简函数解析式,由三角函数的性质可求函数的最小正周期及单调递减区间;(2)将条件代入函数解析式可求出角,由三角形面积公式求出边,再由余弦定理求出边,再由正弦定理可求外接圆半径.试题解析:(1)由题意得:.所以,函数的最小正周期为,由得函数的单调递减区间是(2),解得,又的面积为.得.再由余弦定理,解得,即△为直角三角形.考点:1.向量坐标运算;2.三角函数图象与性质;3.正弦定理与余弦定理.18、(3)甲班参加;(4).【解题分析】

试题分析:(3)由题意知求出x=5,y=4.从而求出乙班学生的平均数为83,分别求出S34和S44,根据甲、乙两班的平均数相等,甲班的方差小,得到应该选派甲班的学生参加决赛.(4)成绩在85分及以上的学生一共有5名,其中甲班有4名,乙班有3名,由此能求出随机抽取4名,至少有3名来自甲班的概率.试题解析:(3)甲班的平均分为,易知.;又乙班的平均分为,∴;∵,,说明甲班同学成绩更加稳定,故应选甲班参加.(4)分及以上甲班有人,设为;乙班有人,设为,从这人中抽取人的选法有:,共种,其中甲班至少有名学生的选法有种,则甲班至少有名学生被抽到的概率为.考点:3.古典概型及其概率计算公式;4.茎叶图.19、(1)或;(2)或.【解题分析】

(1)代入,把项都移到左边,合并同类项再因式分解,即可得到本题答案;(2)等价于,考虑的图象不在图象的上方,利用数形结合的方法,即可得到本题答案.【题目详解】(1)当时,由得,即,解得,或,所以,所求不等式的解集为或;(2)等价于,所以当时,的图象在图象的下方,所以或所以,,或.【题目点拨】本题主要考查一元二次不等式以及利用数形结合的方法解决不等式的恒成立问题.20、(Ⅰ);(Ⅱ),,年销售量更稳定.【解题分析】

(Ⅰ)列举出所有可能的情况,在其中找到至少一个月份两年销量相同的情况,根据古典概型概率公式求得结果;(Ⅱ)根据平均数和方差的计算公式分别计算出两年销量的平均数与方差;由可得结论.【题目详解】(Ⅰ)从月至月中任选两个月份,记为,所有可能的结果为:,,,,,,,,,,共种情况记事件为“至少有一个月份这两年国产品牌销量相同”,则有:,,,,,,,共种情况,即至少有一个月份这两年国产品牌销量相同的概率为(Ⅱ)年销售数据平均数为:方差年销售数据平均数为:方差年的销售量更稳定【题目

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论