2024届江苏省南通市海安县数学高一第二学期期末质量跟踪监视试题含解析_第1页
2024届江苏省南通市海安县数学高一第二学期期末质量跟踪监视试题含解析_第2页
2024届江苏省南通市海安县数学高一第二学期期末质量跟踪监视试题含解析_第3页
2024届江苏省南通市海安县数学高一第二学期期末质量跟踪监视试题含解析_第4页
2024届江苏省南通市海安县数学高一第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省南通市海安县数学高一第二学期期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,点A、B分别为图象在y轴右侧的第一个最高点和第一个最低点,O为坐标原点,若△OAB为锐角三角形,则的取值范围为()A. B. C. D.2.已知,函数,存在常数,使得为偶函数,则可能的值为()A. B. C. D.3.已知,,,则()A. B. C.-7 D.74.直线的倾斜角为A. B. C. D.5.过点A(3,3)且垂直于直线的直线方程为A. B. C. D.6.如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全。已知该班学生投篮成绩的中位数是5,则根据统计图,则下列说法错误的是()A.3球以下(含3球)的人数为10B.4球以下(含4球)的人数为17C.5球以下(含5球)的人数无法确定D.5球的人数和6球的人数一样多7.某几何体三视图如图所示,则该几何体的体积为()A. B. C. D.8.函数的最小正周期为,则的图象的一条对称轴方程是()A. B. C. D.9.函数的一个对称中心是()A. B. C. D.10.《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽丈,长丈;上棱长丈,无宽,高丈(如图).问它的体积是多少?”这个问题的答案是()A.立方丈 B.立方丈C.立方丈 D.立方丈二、填空题:本大题共6小题,每小题5分,共30分。11.设表示不超过的最大整数,则________12.三阶行列式中,元素4的代数余子式的值为________.13.若八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的方差是______14.已知数列:,,,,,,,,,,,,,,,,,则__________.15.在中,角所对边长分别为,若,则的最小值为__________.16.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,下列四个命题正确的是________.①若l⊥β,则α⊥β;②若α⊥β,则l⊥m;③若l∥β,则α∥β;④若α∥β,则l∥m.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量万件(生产量与销售量相等)与推广促销费万元之间的函数关系为(其中推广促销费不能超过5千元).已知加工此农产品还要投入成本万元(不包括推广促销费用),若加工后的每件成品的销售价格定为元/件.(1)试将该批产品的利润万元表示为推广促销费万元的函数;(利润=销售额-成本-推广促销费)(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?18.如图,在平面四边形ABCD中,,,,.(1)若点E为边CD上的动点,求的最小值;(2)若,,,求的值.19.已知向量是夹角为的单位向量,,(1)求;(2)当m为何值时,与平行?20.对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图:分组频数频率2440.120.05合计1(1)求出表中,及图中的值;(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.21.设等差数列满足.(1)求数列的通项公式;(2)若成等比数列,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

△OAB为锐角三角形等价于,再运算即可得解.【题目详解】解:由题意可得,,由△OAB为锐角三角形,则,即,解得:,即的取值范围为,故选:B.【题目点拨】本题考查了三角函数图像的性质,重点考查了向量数量积的运算,属中档题.2、C【解题分析】

直接利用三角函数性质的应用和函数的奇偶性的应用求出结果.【题目详解】解:由函数,存在常数,使得为偶函数,则,由于函数为偶函数,故,所以,当时,.故选:C.【题目点拨】本题考查三角函数的性质的应用,属于基础题.3、C【解题分析】

把已知等式平方后可求得.【题目详解】∵,∴,即,,∵,∴,∴,,∴.故选C.【题目点拨】本题考查同角间的三角函数关系,考查两角和的正切公式,解题关键是把已知等式平方,并把1用代替,以求得.4、D【解题分析】

求得直线的斜率,由此求得直线的倾斜角.【题目详解】依题意,直线的斜率为,对应的倾斜角为,故选D.【题目点拨】本小题主要考查由直线一般式求斜率和倾斜角,考查特殊角的三角函数值,属于基础题.5、D【解题分析】过点A(3,3)且垂直于直线的直线斜率为,代入过的点得到.故答案为D.6、D【解题分析】

据投篮成绩的条形统计图,结合中位数的定义,对选项中的命题分析、判断即可.【题目详解】根据投篮成绩的条形统计图,3球以下(含3球)的人数为,6球以下(含6球)的人数为,结合中位数是5知4球以下(含4球)的人数为不多于17,而由条形统计图得4球以下(含4球)的人数不少于,因此4球以下(含4球)的人数为17所以5球的人数和6球的人数一共是17,显然5球的人数和6球的人数不一样多,故选D.【题目点拨】本题考查命题真假的判断,考查条形统计图、中位数的性质等基础知识,考查运算求解能力,是基础题.7、B【解题分析】试题分析:该几何体是正方体在两个角各挖去四分之一个圆柱,因此.故选B.考点:三视图,体积.8、B【解题分析】

根据最小正周期为求解与解析式,再求解的对称轴判断即可.【题目详解】因为最小正周期为,故.故,对称轴方程为,解得.当时,.故选:B【题目点拨】本题主要考查了三角函数最小正周期的应用以及对称轴的计算.属于基础题.9、A【解题分析】

令,得:,即函数的对称中心为,再求解即可.【题目详解】解:令,解得:,即函数的对称中心为,令,即函数的一个对称中心是,故选:A.【题目点拨】本题考查了正切函数的对称中心,属基础题.10、A【解题分析】过点分别作平面和平面垂直于底面,所以几何体的体积分为三部分中间是直三棱柱,两边是两个一样的四棱锥,所以立方丈,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据1弧度约等于且正弦函数值域为,故可分别计算求和中的每项的正负即可.【题目详解】故答案为:【题目点拨】本题主要考查了三角函数的计算,属于基础题型.12、6【解题分析】

利用代数余子式的定义直接求解.【题目详解】三阶行列式中,元素4的代数余子式的值为:.故答案为:6.【题目点拨】本题主要考查了三阶行列式中元素的代数余子式的求法,属于中档题.13、1.1【解题分析】

先求出这组数据的平均数,由此能求出这组数据的方差.【题目详解】八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的平均数为:(87+88+90+91+92+93+93+94)=91,∴这组数据的方差为:S2[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=1.1.故答案为1.1.【题目点拨】本题考查方差的求法,考查平均数、方差的性质等基础知识,考查了推理能力与计算能力,是基础题.14、【解题分析】

根据数列的规律和可知的取值为,则分母为;又为分母为的项中的第项,则分子为,从而得到结果.【题目详解】当时,;当时,的分母为:又的分子为:本题正确结果:【题目点拨】本题考查根据数列的规律求解数列中的项,关键是能够根据分子的变化特点确定的取值.15、【解题分析】

根据余弦定理,可得,然后利用均值不等式,可得结果.【题目详解】在中,,由,所以又,当且仅当时取等号故故的最小值为故答案为:【题目点拨】本题考查余弦定理以及均值不等式,属基础题.16、①【解题分析】

由线面的平行垂直的判定和性质一一检验即可得解.【题目详解】由平面与平面垂直的判定可知,①正确;②中,当α⊥β时,l,m可以垂直,也可以平行,也可以异面;③中,l∥β时,α,β可以相交;④中,α∥β时,l,m也可以异面.故答案为①.【题目点拨】本题主要考查了线面、面面的垂直和平行位置关系的判定和性质,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当推广促销费投入3万元时,利润最大,最大利润为27万元.【解题分析】试题分析:⑴根据题意即可求得,化简即可;⑵利用基本不等式可以求出该函数的最值,注意等号成立的条件,即可得到答案;解析:(1)由题意知∴.(2)∵∴.当且仅当时,上式取“”∴当时,.答:当推广促销费投入3万元时,利润最大,最大利润为27万元.18、(1);(2)【解题分析】

(1)建立平面直角坐标系,将范围问题转化为函数的最值问题,进而求解函数的最值即可;(2)根据、两点的位置,可以写出对应的坐标,从而在直角三角形中求得的正余弦,进而用余弦的和角公式进行求解.【题目详解】(1)设AC,BD相交于O,由于,所以,所以,因此,以DB所在的直线为x轴,以AC所在的直线为y轴建立平面直角坐标系如下图所示:故,,,.因为直线CD的方程为,所以可设.所以,.所以,当时,最小为.(2)因为,,所以,.因此,,.所以,.所以,.【题目点拨】本题考查利用向量解决几何问题,涉及范围问题的求解,属经典好题.19、(1)1;(2)﹣6【解题分析】

(1)利用单位向量的定义,直接运算即可;(2)利用,有,得出,然后列方程求解即可【题目详解】解:(1);(2)当,则存在实数使,所以不共线,得,【题目点拨】本题考查向量平行的定义,注意列方程运算即可,属于简单题20、(1);;;(2)60人.(3)【解题分析】

(1)根据频率,频数和样本容量之间的关系即频率等于频数除以样本容量,写出算式,求出式子中的字母的值;(2)该校高三学生有240人,分组内的频率是0.25,估计该校高三学生参加社区服务的次数在此区间内的人数为60人;(3)设在区间内的人为,,,,在区间内的人为,,写出任选2人的所有基本事件,利用对立事件求得答案.【题目详解】(1)由分组内的频数是10,频率是0.25知,,∴.∵频数之和为40,∴,,.∵是对应分组的频率与组距的商,∴;(2)因为该校高三学生有240人,分组内的频率是0.25,∴估计该校高三学生参加社区服务的次数在此区间内的人数为60人.(3)这个样本参加社区服务的次数不少于20次的学生共有人,设在区间内的人为,,,,在区间内的人为,.则任选2人共有,,,,,,,,,,,,,,15种情况,而两人都在内只能是一种,∴所求概率为.【题目点拨】本题以图表为背景,考查从图表中提取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论