版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市四区高一数学第二学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两条直线m,n,两个平面α,β,给出下面四个命题:①m//n,m⊥α⇒n⊥α;②α//β,m⊂α,n⊂β⇒m//n;③m//n,m//α⇒n//α;④α//β,m//n,m⊥α⇒n⊥β其中正确命题的序号是()A.①④B.②④C.①③D.②③2.化简的结果是()A. B. C. D.3.等比数列中,,则A.20 B.16 C.15 D.104.下面结论中,正确结论的是()A.存在两个不等实数,使得等式成立B.(0<x<π)的最小值为4C.若是等比数列的前项的和,则成等比数列D.已知的三个内角所对的边分别为,若,则一定是锐角三角形5.记为实数中的最大数.若实数满足则的最大值为()A. B.1 C. D.6.某中学举行英语演讲比赛,如图是七位评委为某位学生打出分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的中位数和平均数分别为()A.84,85 B.85,84 C.84,85.2 D.86,857.已知向量,则与夹角的大小为()A. B. C. D.8.某班20名学生的期末考试成绩用如图茎叶图表示,执行如图程序框图,若输入的()分别为这20名学生的考试成绩,则输出的结果为()A.11 B.10 C.9 D.89.在平面坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以Ox为始边,OP为终边,若,则P所在的圆弧最有可能的是()A. B. C. D.10.已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知P1(x1,y1),P2(x2,y2)是以原点O为圆心的单位圆上的两点,∠P1OP2=θ(θ为钝角).若,则x1x2+y1y2的值为_____.12.已知两个数k+9和6-k的等比中项是2k,则k=________.13.已知向量,满足,与的夹角为,则在上的投影是;14.若角的终边过点,则______.15.在等比数列中,,公比,若,则的值为.16.已知等差数列满足,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.记为数列的前项和,且满足.(1)求数列的通项公式;(2)记,求满足等式的正整数的值.18.在锐角中,角所对的边分别为,已知,,.(1)求角的大小;(2)求的面积.19.已知三棱柱(如图所示),底面为边长为2的正三角形,侧棱底面,,为的中点.(1)求证:平面;(2)若为的中点,求证:平面;(3)求三棱锥的体积.20.制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利分别为和,可能的最大亏损率分别为和.投资人计划投资金额不超过亿元,要求确保可能的资金亏损不超过亿元,问投资人对甲、乙两个项目各投资多少亿元,才能使可能的盈利最大?21.在中,角的对边分别为,且.(1)求角的大小;(2)若,求的面积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】依据线面垂直的判定定理可知命题①是正确的;对于命题②,直线m,n还有可能是异面,因此不正确;对于命题③,还有可能直线n⊂α,因此③命题不正确;依据线面垂直的判定定理可知命题④是正确的,故应选答案A.2、A【解题分析】
根据平面向量加法及数乘的几何意义,即可求解,得到答案.【题目详解】根据平面向量加法及数乘的几何意义,可得,故选A.【题目点拨】本题主要考查了平面向量的加法法则的应用,其中解答中熟记平面向量的加法法则是解答的关键,着重考查了推理与运算能力,属于基础题.3、B【解题分析】试题分析:由等比中项的性质可得:,故选择B考点:等比中项的性质4、A【解题分析】
对各个选项逐一判断,对于选项A,由,代入计算,即可判断是否正确;对于选项B,设,结合函数的单调性,即可判断是否正确;对于选项C,由公比为为偶数,即可判断是否正确;对于选项D,由余弦定理,即可判断是否正确.【题目详解】对于选项A,两个不等实数,使得等式成立,故A正确;对于选项B,若设设,可得在递减,即函数的最小值为,故B错误;对于选项C,是等比数列的前项的和,当公比,为偶数时,则,均为,不能够成等比数列,故C错误;对于选项D,中,若,可得,即为锐角,不能判断一定是锐角三角形,故D错误.故选:A.【题目点拨】本题考查两角和的正弦公式、基本不等式和等比数列的性质,以及余弦定理的应用,属于基础题.5、B【解题分析】
先利用判别式法求出|x|,|y|,|z|的取值范围,再判断得解.【题目详解】因为,所以,整理得:,解得,所以,同理,.故选B【题目点拨】本题主要考查新定义和判别式法求范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.6、A【解题分析】
剩余数据为:84.84,86,84,87,计算中位数和平均数.【题目详解】剩余数据为:84.84,86,84,87则中位数为:84平均数为:故答案为A【题目点拨】本题考查了中位数和平均数的计算,属于基础题型.7、D【解题分析】
。分别求出,,,利用即可得出答案.【题目详解】设与的夹角为故选:D【题目点拨】本题主要考查了求向量的夹角,属于基础题.8、A【解题分析】
首先判断程序框图的功能,然后从茎叶图数出相应人数,从而得到答案.【题目详解】由算法流程图可知,其统计的是成绩大于等于120的人数,所以由茎叶图知:成绩大于等于120的人数为11,故选A.【题目点拨】本题主要考查算法框图的输出结果,意在考查学生的分析能力及计算能力,难度不大.9、A【解题分析】
根据三角函数线的定义,分别进行判断排除即可得答案.【题目详解】若P在AB段,正弦小于正切,正切有可能小于余弦;若P在CD段,正切最大,则cosα<sinα<tanα;若P在EF段,正切,余弦为负值,正弦为正,tanα<cosα<sinα;若P在GH段,正切为正值,正弦和余弦为负值,cosα<sinα<tanα.∴P所在的圆弧最有可能的是.故选:A.【题目点拨】本题任意角的三角函数的应用,根据角的大小判断角的正弦、余弦、正切值的正负及大小,为基础题.10、C【解题分析】由题意,得,设过的抛物线的切线方程为,联立,,令,解得,即,不妨设,由双曲线的定义得,,则该双曲线的离心率为.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、-【解题分析】
先利用平面向量数量积的定义和坐标运算得到,再利用两角和的正弦公式和平方关系进行求解.【题目详解】根据题意知,又P1,P2在单位圆上,,即x1x2+y1y2=cosθ;∵①又sin2θ+cos2θ=1②且θ为钝角,联立①②求得cosθ=-.【题目点拨】本题主要考查平面向量的数量积定义和坐标运算、两角和的正弦公式,意在考查学生的逻辑思维能力和基本运算能力,属于中档题.12、3【解题分析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.13、1【解题分析】考查向量的投影定义,在上的投影等于的模乘以两向量夹角的余弦值14、-2【解题分析】
由正切函数定义计算.【题目详解】根据正切函数定义:.故答案为-2.【题目点拨】本题考查三角函数的定义,掌握三角函数定义是解题基础.15、1【解题分析】
因为,,故答案为1.考点:等比数列的通项公式.16、【解题分析】
由等差数列的性质计算.【题目详解】∵是等差数列,∴,∴.故答案为:1.【题目点拨】本题考查等差数列的性质,属于基础题.等差数列的性质如下:在等差数列中,,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)首先利用数列的递推关系式求出数列的通项公式;(2)先求出,再利用裂项相消法求出数列的和,解出即可.【题目详解】(1)由为数列的前项和,且满足.当时,,得.当时,,得,所以数列是以2为首项,以为公比的等比数列,则数列的通项公式为.(2)由,得由,解得.【题目点拨】本题考查了等比数列的通项公式的求法,裂项相消法求数列的和,属于基础题.18、(1);(2).【解题分析】试题分析:(1)先由正弦定理求得与的关系,然后结合已知等式求得的值,从而求得的值;(2)先由余弦定理求得的值,从而由的范围取舍的值,进而由面积公式求解.试题解析:(1)在中,由正弦定理,得,即.又因为,所以.因为为锐角三角形,所以.(2)在中,由余弦定理,得,即.解得或.当时,因为,所以角为钝角,不符合题意,舍去.当时,因为,又,所以为锐角三角形,符合题意.所以的面积.考点:1、正余弦定理;2、三角形面积公式.19、(1)见解析(2)见解析(3)【解题分析】
(1)在平面找一条直线平行即可.(2)在平面内找两条相交直线垂直即可.(3)三棱锥即可【题目详解】(1)连接,因为直棱柱,则为矩形,则为的中点连接,在中,为中位线,则平面(2)连接,底面底面底面①为正边的中点②由①②及平面(3)因为取的中点,连接,则平面,即为高,【题目点拨】本题主要考查了直线与平面平行,直线与平面垂直的证明,以及三棱锥的体积公式,证明直线与平面平行往往转化成证明直线与直线平行.属于中等题.20、投资人用亿元投资甲项目,亿元投资乙项目,才能在确保亏损不超过亿元的前提下,使可能的盈利最大.【解题分析】
设投资人分别用亿元、亿元投资甲、乙两个项目,根据题意列出变量、所满足的约束条件和线性目标函数,利用平移直线的方法得出线性目标函数取得最大值时的最优解,并将最优解代入线性目标函数可得出盈利的最大值,从而解答该问题.【题目详解】设投资人分别用亿元、亿元投资甲、乙两个项目,由题意知,即,目标函数为.上述不等式组表示平面区域如图所示,阴影部分(含边界)即可行域.由图可知,当直线经过点时,该直线在轴上截距最大,此时取得最大值,解方程组,得,所以,点的坐标为.当,时,取得最大值,此时,(亿元).答:投资人用亿元投资甲项目,亿元投资乙项目,才能在确保亏损不超过亿元的前提下,使可能的盈利最大.【题目点拨】本题考查线性规划的实际应用,考查利用数学知识解决实际问题,解题的关键就是列出变量所满足的约束条件,并利用数形结合思想求解,考查分析问题和解决问题的能力,属于中等题.21、(1);(2).【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届四川乐山市中区生物高一第一学期期末检测试题含解析
- 江西省鹰潭一中2025届高一生物第一学期期末教学质量检测模拟试题含解析
- 2025届云南省保山隆阳区一中高二生物第一学期期末检测试题含解析
- 2025届重庆市綦江区南州中学生物高一上期末质量跟踪监视模拟试题含解析
- 辽宁省部分重点中学2025届高三英语第一学期期末综合测试试题含解析
- 2025届江西省上饶县中学高一上数学期末质量跟踪监视试题含解析
- 广西玉林市陆川县2025届数学高二上期末教学质量检测试题含解析
- 2025届广东省越秀外国语学校高二上数学期末达标检测模拟试题含解析
- 2025届河南省安阳市林州市林滤中学生物高二上期末联考试题含解析
- 2025届山东省潍坊寿光市高三数学第一学期期末学业水平测试模拟试题含解析
- 2024年浙江中烟工业限责任公司公开招聘136人高频难、易错点500题模拟试题附带答案详解
- GB/T 5510-2024粮油检验谷物及制品脂肪酸值的测定
- 小学劳动教育一年级下册第二单元第3课《削果皮》课件
- GB/T 22838.6-2024卷烟和滤棒物理性能的测定第6部分:硬度
- 第三单元数一数与乘法《儿童乐园》(教学设计)-2024-2025学年北师大版数学二年级上册
- 部编2024版历史七年级上册第三单元《第13课 东汉的兴衰》教案
- 英语雅思8000词汇表
- 2024年小工厂入股合作协议书范文模板
- 2024人教版道法七年级上册第二单元:成长的时空大单元整体教学设计
- 职业技能大赛-网站设计与开发竞赛理论知识题库(附参考答案)
- 教科版二年级上册期中检测科学试卷
评论
0/150
提交评论