2024届山东省济南三中数学高一第二学期期末检测试题含解析_第1页
2024届山东省济南三中数学高一第二学期期末检测试题含解析_第2页
2024届山东省济南三中数学高一第二学期期末检测试题含解析_第3页
2024届山东省济南三中数学高一第二学期期末检测试题含解析_第4页
2024届山东省济南三中数学高一第二学期期末检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省济南三中数学高一第二学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,是三条不同的直线,,是两个不同的平面,则下列命题正确的是A.若,,,,,则B.若,,,,则C.若,,,,,则D.若,,,则2.在中,,.若点满足,则()A. B. C. D.3.某小组共有5名学生,其中男生3名,女生2名,现选举2名代表,则恰有1名女生当选的概率为()A. B. C. D.4.已知函数,则有A.的图像关于直线对称 B.的图像关于点对称C.的最小正周期为 D.在区间内单调递减5.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.6.已知函数的部分图象如图所示,则函数在上的最大值为()A. B. C. D.17.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是()A.12 B.34 C.18.经过平面α外两点,作与α平行的平面,则这样的平面可以作()A.1个或2个B.0个或1个C.1个D.0个9.已知一组数1,1,2,3,5,8,,21,34,55,按这组数的规律,则应为()A.11 B.12 C.13 D.1410.设首项为,公比为的等比数列的前项和为,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为升;12.在等比数列中,,,则______________.13.将二进制数110转化为十进制数的结果是_____________.14.不等式的解集是_______.15.把二进制数1111(2)化为十进制数是______.16.已知平面向量,,满足:,且,则的最小值为____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别为,已知(1)求;(2)若为锐角三角形,且边,求面积的取值范围.18.计算:(1)(2)(3)19.已知的角、、所对的边分别是、、,设向量,,.(1)若,求证:为等腰三角形;(2)若,边长,角,求的面积.20.如图所示,在直三棱柱(侧面和底面互相垂直的三棱柱叫做直三棱柱)中,平面,,设的中点为D,.(1)求证:平面;(2)求证:.21.已知直线l经过点.(1)若直线在两坐标轴上的截距相等,求直线的方程;(2)若,两点到直线的距离相等,求直线的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

逐一分析选项,得到答案.【题目详解】A.根据条件可知,若,不能推出;B.若,就不能推出;C.条件中没有,所以不能推出;D.因为,,所以,因为,所以.【题目点拨】本题考查了面面平行的判断,属于基础题型,需要具有空间想象能力,以及逻辑推理能力.2、A【解题分析】

试题分析:,故选A.3、B【解题分析】

记三名男生为,两名女生为,分别列举出基本事件,得出基本事件总数和恰有1名女生当选包含的基本事件个数,即可得解.【题目详解】记三名男生为,两名女生为,任选2名所有可能情况为,共10种,恰有一名女生的情况为,共6种,所以恰有1名女生当选的概率为.故选:B【题目点拨】此题考查根据古典概型求概率,关键在于准确计算出基本事件总数,和某一事件包含的基本事件个数.4、B【解题分析】

把函数化简后再判断.【题目详解】,由正切函数的性质知,A、C、D都错误,只有B正确.【题目点拨】本题考查二倍角公式和正切函数的性质.三角函数的性质问题,一般要把函数化为一个角的一个三角函数形式,然后结合相应的三角函数得出结论.5、C【解题分析】

通过三视图可以判断这一个是半个圆柱与半个圆锥形成的组合体,利用圆柱和圆锥的体积公式可以求出这个组合体的体积.【题目详解】该几何体为半个圆柱与半个圆锥形成的组合体,故,故选C.【题目点拨】本题考查了利用三视图求组合体图形的体积,考查了运算能力和空间想象能力.6、A【解题分析】

由图象求出T、ω和φ的值,写出f(x)的解析式,再求x∈[6,10]时函数f(x)的最大值.【题目详解】由图象可知,5﹣3=2,解得T=8,由T8,解得ω;∴函数的解析式是f(x)=sin(x+φ);∵(5,1)在f(x)的图象上,有1=sin(φ)∴φ=2kπ,k∈Z;φ=2kπ,k∈Z;又﹣π<φ<0,∴φ;∴函数的解析式是f(x)=sin(x)当x∈[6,10]时,x∈[,],∴sin(x)∈[﹣1,];∴函数f(x)的最大值是.故选A.【题目点拨】本题考查了三角函数的图象与性质的应用问题,熟记图像与性质是关键,是基础题.7、D【解题分析】

求出阴影部分的面积,然后与圆面积作比值即得.【题目详解】圆被8等分,其中阴影部分有3分,因此所求概率为P=3故选D.【题目点拨】本题考查几何概型,属于基础题.8、B【解题分析】若平面α外的两点所确定的直线与平面α平行,则过该直线与平面α平行的平面有且只有一个;若平面α外的两点所确定的直线与平面α相交,则过该直线的平面与平面α平行的平面不存在;故选B.9、C【解题分析】

易得从第三项开始数列的每项都为前两项之和,再求解即可.【题目详解】易得从第三项开始数列的每项都为前两项之和,故.故选:C【题目点拨】该数列为“斐波那契数列”,从第三项开始数列的每项都为前两项之和,属于基础题.10、D【解题分析】Sn====3-2an.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】试题分析:由题意可知,解得,所以.考点:等差数列通项公式.12、1【解题分析】

根据已知两项求出数列的公比,然后根据等比数列的通项公式进行求解即可.【题目详解】∵a1=1,a5=4∴公比∴∴该等比数列的通项公式a3=11=1故答案为:1.【题目点拨】本题主要考查了等比数列的通项公式,一般利用基本量的思想,属于基础题.13、6【解题分析】

将二进制数从右开始,第一位数字乘以2的0次幂,第二位数字乘以2的1次幂,以此类推,进行计算即可.【题目详解】,故答案为:6.【题目点拨】本题考查进位制,解题关键是了解不同进制数之间的换算法则,属于基础题.14、【解题分析】

且,然后解一元二次不等式可得解集.【题目详解】解:,∴且,或,不等式的解集为,故答案为:.【题目点拨】本题主要考查分式不等式的解法,关键是将分式不等式转化为其等价形式,属于基础题.15、.【解题分析】

由二进制数的定义可将化为十进制数.【题目详解】由二进制数的定义可得,故答案为:.【题目点拨】本题考查二进制数化十进制数,考查二进制数的定义,考查计算能力,属于基础题.16、-1【解题分析】

,,,由经过向量运算得,知点在以为圆心,1为半径的圆上,这样,只要最小,就可化简.【题目详解】如图,,则,设是中点,则,∵,∴,即,,记,则点在以为圆心,1为半径的圆上,记,,注意到,因此当与反向时,最小,∴.∴最小值为-1.故答案为-1.【题目点拨】本题考查平面向量的数量积,解题关键是由已知得出点轨迹(让表示的有向线段的起点都是原点)是圆,然后分析出只有最小时,才可能最小.从而得到解题方法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)利用正弦定理边化角,再利用和角的正弦公式化简即得B的值;(2)先根据已知求出,再求面积的取值范围.【题目详解】解:(1),即可得,∵∴∵∴∴由,可得;(2)若为锐角三角形,且,由余弦定理可得,由三角形为锐角三角形,可得且解得,可得面积【题目点拨】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的取值范围的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1);(2);(3).【解题分析】

利用诱导公式,对每一道题目进行化简求值.【题目详解】(1)原式.(2)原式.(3)原式.【题目点拨】在使用诱导公式时,注意“奇变偶不变,符号看象限”法则的应用,即辅助角为的奇数倍,函数名要改变;若为的偶数倍,函数名不改变.19、(1)见解析(2)【解题分析】

⑴因为,所以,即,其中是的外接圆半径,所以,所以为等腰三角形.⑵因为,所以.由余弦定理可知,,即解方程得:(舍去)所以.20、(1)见解析;(2)见解析.【解题分析】

(1)由可证平面;(2)先证,再证,即可证明平面,即可得出.【题目详解】(1)∵三棱柱为直三棱柱,∴四边形为矩形,∴E为中点,又D点为中点,∴DE为的中位线,∴,又平面,平面,∴平面;(2)∵三棱柱为直三棱柱,∴平面ABC,∴,又∵,∴四边形为正方形,所以,∵平面,∴,和相交于C,∴平面,∴.【题目点拨】本题考查线面平行的证明,考查线面垂直的判定及性质,考查空间想象能力,属于常考题.21、(2)或(2)或【解题分析】

(2)讨论直线是否过原点,利用截距相等进行求解即可.(2)根据点到直线的距离相等,分直线平行和直线过A,B的中点两种情况进行求解即可.【题目详解】(2)若直线过原点,则设为y=kx,则k=2,此时直线方程为y=2x,当直线不过原点,设方程为2,即x+y=a,此时a=2+2=2,则方程为x+y=2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论