




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题29四点共圆问题【规律总结】1、四点共圆:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角。2、判定定理:方法1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)方法2 :把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)【典例分析】例1.(2021·沭阳红岩学校九年级期末)如图,在中,,,,点P为平面内一点,且,过C作交PB的延长线于点Q,则CQ的最大值为()A. B. C. D.【答案】B【分析】根据题意可得A、B、C、P四点共圆,由AA定理判定三角形相似,由此得到CQ的值与PC有关,当PC最大时CQ即取最大值.【详解】解:∵在中,,,,∴A、B、C、P四点共圆,AB为圆的直径,AB=∵∴∴△ABC∽△PQC∴,,即∴当PC取得最大值时,CQ即为最大值∴当PC=AB=5时,CQ取得最大值为故选:B.【点睛】本题考查相似三角形的判定和性质以及四点共圆,掌握同圆或等圆中,同弧所对的圆周角相等确定四点共圆,利用相似三角形性质得到线段间等量关系是解题关键.例2.(2019·上海市市西初级中学八年级期末)如图,是和的公共斜边,AC=BC,,E是的中点,联结DE、CE、CD,那么___________________.【答案】13【分析】先证明A、C、B、D四点共圆,得到∠DCB与∠BAD的是同弧所对的圆周角的关系,得到∠DCB的度数,再证∠ECB=45°,得出结论.【详解】解:∵AB是Rt△ABC和Rt△ABD的公共斜边,E是AB中点,∴AE=EB=EC=ED,∴A、C、B、D在以E为圆心的圆上,∵∠BAD=32°,∴∠DCB=∠BAD=32°,又∵AC=BC,E是Rt△ABC的中点,∴∠ECB=45°,∴∠ECD=∠ECB-∠DCB=13°.故答案为:13.【点睛】本题考查直角三角形的性质、等腰三角形性质、圆周角定理和四点共圆问题,综合性较强.例3.(2020·北京市三帆中学九年级期中)已知:过上一点作两条弦、,且,(、都不经过)过作的垂线,交于,直线,交于点,直线,交于点.(1)请在图1中,按要求补全图形;(2)在图2中探索线段和的数量关系,并证明你的结论;(3)探索线段、、的数量关系,并直接写出你的结论________.【答案】(1)见解析;(2),理由见解析;(3)【分析】(1)根据题意补全图形即可;(2)连接,CD,取中点连接、,证明、、、四点共圆进而可证出结论;(3)由(2)知,点A、B、E、F四点共圆,连接CD,交AB于点P,则CD过圆心O,由证得出△ACB∽△APD∽CPB,进而可证,由等量代换可得出结论.【详解】解:(1)补全图形(2)证明:连接,CD,CD过圆心O,CD为直径,取中点连接、∵,∠DBF=90°,∴∵∴∴、、、在圆上,∴∠1=∠2,∵∠DAE=90°,∠BAD=45°,∴∠2=∠BAD=45°,又∵∠EBF=90°,∴∠BEF=45°=∠1,∴,故答案为:;(3)由(2)知,点A、B、E、F四点共圆,连接CD,交AB于点P,则CD过圆心O,∴∠BEA=∠BFA,,∠EBC=∠DBF=∠DAE=90°,∴△EBC≌△FBD,∴BC=BD,CE=DF,在△ACB和△APD中,∠CAB=∠DAB=45°,∠ABC=∠ADC,∠BCD=45°,∴△ACB∽△APD∽CPB,∴,∴,CD为直径,,∴====2,∴,∴AE=CE+AC=DF+AC=AF+DA+AC=AF+,∴,故答案为:.
【点睛】本题考查了四点共圆的证明,圆的性质以及性质应用,勾股定理的应用,熟练掌握圆的性质是解题的关键.【好题演练】一、单选题1.(2020·浙江杭州市·九年级专题练习)如图,圆上有、、、四点,其中,若弧、弧的长度分别为、,则弧的长度为()A. B. C. D.【答案】C【分析】先求出圆的周长,再根据圆内接四边形的性质可得,然后根据圆周角定理可得弧所对圆心角的度数,最后根据弧长的定义即可得.【详解】弧、弧的长度分别为、圆的周长为(圆内接四边形的对角互补)弧所对圆心角的度数为则弧的长度为故选:C.【点睛】本题考查了圆周角定理、弧长的定义、圆内接四边形的性质,熟记圆的相关定理与性质是解题关键.2.(2019·浙江绍兴市·九年级期中)如图1,在等腰三角形ABC中,AB=AC=4,BC=6.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.1 B. C. D.【答案】A【分析】只要证明,得,求出、即可解决问题.【详解】解:,,,,,,,,,,,,,,即,,,,、、、四点共圆,,,,,.故选:.【点睛】本题考查翻折变换、等腰三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是充分利用相似三角形的性质解决问题,本题需要三次相似解决问题,题目比较难,属于中考选择题中的压轴题.二、填空题3.(2020·黑龙江哈尔滨市·)如图,等边△ABC中,D在BC上,E在AC上,BD=CE,连BE、AD交于F,T在EF上,且DT=CE,AF=50,TE=16,则FT=_____.【答案】17【分析】用“SAS”可判定△ABD≌△BCE,得到∠AFE=60°,延长FE至点G,使得FG=FA,连AG,AT,得到△AFG是等边三角形,证明A、B、D、T四点共圆,设法证明△FAT≌△GAE(ASA),即可求得答案.【详解】∵△ABC为等边三角形,
∴AB=AC=BC,∠ABD=∠BCE=60°,
在△ABD和△BCE中,,
∴△ABD≌△BCE(SAS),
∴∠BAD=∠CBE,
∵∠ADC=∠CBE+∠BFD=∠BAD+∠B,
∴∠BFD=∠B=∠AFE=60°;延长FE至点G,使得FG=FA,连AG,AT,∵∠AFE=60°,∴△AFG是等边三角形,∴AG=AF=FG=50,∠AGF=∠FAG=60°,∵∠BAF+∠EAF=∠CAG+∠EAF=60°,∴∠BAF=∠CAG,∵DT=CE,∴∠DBT=∠BTD,∵∠BAD=∠CBE,
∴∠BAD=∠BTD,∴A、B、D、T四点共圆,∴∠BAD=∠DAT,∴∠FAT=∠GAE,在△FAT和△GAE中,,
∴△FAT≌△GAE(ASA),∴FT=GE,∵FG=50,TE=16,∴FT=(FG-TE)=17.故答案为:17.【点睛】本题主要考查了等边三角形的判定和性质,全等三角形的判定和性质,圆周角定理等,作出辅助线,判断出△FAT≌△GAE是解本题的关键.4.(2020·西安市铁一中学九年级二模)如图,正方形中,,点为上一点,且,点为边上一动点,连接,过点作,交射线于点,连接,点为中点,连接,则的最小值为________.【答案】【分析】由已知可得AE=3,DE=6,又AB=9,,由勾股定理得BE=,由,,M为PF中点,可知M为四边形BFEP外接圆的圆心,BE为圆M的弦,故圆心M在线段BE的垂直平分线上,作线段BE的垂直平分线GH交BE于G,交CD于H,过点D作于M,此时的线段DM即为所求最小值,过点E作于N,则四边形EGMN为矩形,可得,GE=MN,可证,可得,代入数据得:DN=,又MN=EG=,可得DM的长度.【详解】∵,AD=AB=9,∴AE=3,DE=6,又∵AB=9,,∴BE=,∵,,∴B、F、E、P四点共圆,且PF为直径,∵M为PF中点,∴M为四边形BFEP外接圆的圆心,∵E、B为定点,∴BE为圆M的弦,∴圆心M在线段BE的垂直平分线上,如下图,作线段BE的垂直平分线GH交BE于G,交CD于H,过点D作于M,此时的线段DM即为所求最小值,过点E作于N,则四边形EGMN为矩形,∴,GE=MN,∴,∵,∴,∴,又∵,∴,∴,即,解得:DN=,∵BE=,∴EG=,∴MN=,∴DM=DN+MN=+=.【点睛】本题考查了圆内接四边形,圆的对称性,相似三角形的判定和性质,熟练掌握圆周角定理及其逆定理确定四点共圆是解题的关键.三、解答题5.(2020·沭阳县修远中学九年级期中)在边长为12cm的正方形ABCD中,点E从点D出发,沿边DC以1cm/s的速度向点C运动,同时,点F从点C出发,沿边CB以1cm/s的速度向点B运动,当点E达到点C时,两点同时停止运动,连接AE、DF交于点P,设点E.
F运动时间为t秒.回答下列问题:(1)如图1,当t为多少时,EF的长等于cm?(2)如图2,在点E、F运动过程中,①求证:点A、B、F、P在同一个圆(⊙O)上;②是否存在这样的t值,使得问题①中的⊙O与正方形ABCD的一边相切?若存在,求出t值;若不存在,请说明理由;③请直接写出问题①中,圆心O的运动的路径长为_________.【答案】(1)t=4或8;(2)①证明见解析;②存在,t=3或12;③6cm.【分析】(1)由题意易得DE=CF=t,则有EC=12-t,然后利用勾股定理求解即可;(2)①由题意易证△ADE≌△DCF,则有∠CDF=∠DAE,然后根据平行线的性质可得∠APF=90°,进而可得∠B+∠APF=180°,则问题得证;②由题意可知当⊙O与正方形ABCD的一边相切时,可分两种情况进行分类讨论求解:一是当圆与AD相切时,一是当圆与边DC相切时;③由动点E、F在特殊位置时得出圆心O的运动轨迹,进而求解即可.【详解】解:(1)由题意易得:DE=CF=t,四边形ABCD是正方形,AB=CD=BC=AD=12cm,∠C=∠B=∠ADC=∠DAB=90°,EC=12-t,EF的长等于cm,在Rt△CEF中,,即解得;(2)①由(1)可得AB=CD=BC=AD=12cm,∠C=∠B=∠ADC=∠DAB=90°,DE=CF=t,△ADE≌△DCF,∠CDF=∠DAE,∠CDF+∠PDA=90°,∠DAE+∠PDA=90°,∠ADP=∠APF=90°,∠APF+∠B=180°,由四边形APFB内角和为360°可得:∠PAB+∠PFB=180°,点A、B、F、P在同一个圆(⊙O)上;②由题意易得:当⊙O与正方形ABCD的一边相切时,只有两种情况;a、当⊙O与正方形ABCD的边AD相切时,如图所示:由题意可得AB为⊙O的直径,t=12;b、当⊙O与正方形ABCD的边DC相切于点G时,连接OG并延长交AB于点M,过点O作OH⊥BC交BC于点H,连接OF,如图所示:OG⊥DC,GM⊥AB,HF=HB,四边形OMBH、GOHC是矩形,OH=BM=GC,OG=HC,AB=BC=12cm,OH=6,CF=t,BF=12-t,,在Rt△FOH中,,即,解得:;综上所述:当或t=12时,⊙O与正方形ABCD的边相切;③由(1)(2)可得:当点E与点D重合及点F与点C重合时,圆心在正方形的中心上;当点E与点C重合及点F与点B重合时,圆心在AB的中点上,故圆心的运动轨迹为一条线段,如图所示:OP即为圆心的运动轨迹,即OP=6cm.故答案为6cm.【点睛】本题主要考查圆的综合,熟练掌握圆的性质及切线定理解题的关键,注意运用分类讨论思想解决问题.6.(2020·安徽芜湖市·芜湖一中九年级)已知为锐角的高,为中点,于点,延长至,使得.(1)证明:;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论