版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省武威第八中学2024届高一数学第二学期期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列的通项为,我们把使乘积为整数的叫做“优数”,则在内的所有“优数”的和为()A.1024 B.2012 C.2026 D.20362.过点的圆的切线方程是()A. B.或C.或 D.或3.若函数只有一个零点,则实数的取值范围是A.或 B.C.或 D.4.化简的结果是()A. B. C. D.5.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为,则勾与股的比为()A. B. C. D.6.设数列的前项和为,且,则数列的前10项的和是()A.290 B. C. D.7.已知满足,且,那么下列选项中一定成立的是()A. B. C. D.8.设,则的大小关系为()A. B. C. D.9.读下面的程序框图,若输入的值为-5,则输出的结果是()A.-1 B.0 C.1 D.210.如图,在正方体中,已知,分别为棱,的中点,则异面直线与所成的角等于()A.90° B.60°C.45° D.30°二、填空题:本大题共6小题,每小题5分,共30分。11.水平放置的的斜二测直观图如图所示,已知,,则边上的中线的实际长度为______.12.过点且与直线l:垂直的直线方程为______.(请用一般式表示)13.已知等差数列的前三项为,则此数列的通项公式为______14.已知圆及点,若满足:存在圆C上的两点P和Q,使得,则实数m的取值范围是________.15.数列的前项和为,,,则________.16.如果,,则的值为________(用分数形式表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在锐角中,角,,的对边分别为,,,若.(1)求角;(2)若,则周长的取值范围.18.已知向量(),向量,,且.(Ⅰ)求向量;(Ⅱ)若,,求.19.已知三棱锥中,,.若平面分别与棱相交于点且平面.求证:(1);(2).20.在等差数列{}中,=3,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+S2=12,.(1)求与的通项公式;(2)设数列{}满足,求{}的前n项和.21.设数列的前项和为,若且求若数列满足,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
根据优数的定义,结合对数运算,求得的范围,再用等比数列的前项和公式进行求和.【题目详解】根据优数的定义,令,则可得令,解得则在内的所有“优数”的和为:故选:C.【题目点拨】本题考查新定义问题,本质是考查对数的运算,等比数列前项和公式.2、D【解题分析】
先由题意得到圆的圆心坐标,与半径,设所求直线方程为,根据直线与圆相切,结合点到直线距离公式,即可求出结果.【题目详解】因为圆的圆心为,半径为1,由题意,易知所求切线斜率存在,设过点与圆相切的直线方程为,即,所以有,整理得,解得,或;因此,所求直线方程分别为:或,整理得或.故选D【题目点拨】本题主要考查求过圆外一点的切线方程,根据直线与圆相切,结合点到直线距离公式即可求解,属于常考题型.3、A【解题分析】
根据题意,原题等价于,再讨论即可得到结论.【题目详解】由题,故函数有一个零点等价于即当时,,,符合题意;当,时,令,满足解得,综上的取值范围是或故选:A.【题目点拨】本题考查函数的零点,对数函数的性质,二次函数根的分布问题,考查了分类讨论思想,属于中档题.4、A【解题分析】
根据平面向量加法及数乘的几何意义,即可求解,得到答案.【题目详解】根据平面向量加法及数乘的几何意义,可得,故选A.【题目点拨】本题主要考查了平面向量的加法法则的应用,其中解答中熟记平面向量的加法法则是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解题分析】
分别求解出小正方形和大正方形的面积,可知面积比为,从而构造方程可求得结果.【题目详解】由图形可知,小正方形边长为小正方形面积为:,又大正方形面积为:,即:解得:本题正确选项:【题目点拨】本题考查几何概型中的面积型的应用,关键是能够利用概率构造出关于所求量的方程.6、C【解题分析】
由得为等差数列,求得,得利用裂项相消求解即可【题目详解】由得,当时,,整理得,所以是公差为4的等差数列,又,所以,从而,所以,数列的前10项的和.故选.【题目点拨】本题考查递推关系求通项公式,等差数列的通项及求和公式,裂项相消求和,熟记公式,准确得是等差数列是本题关键,是中档题7、D【解题分析】
首先根据题意得到,,结合选项即可找到答案.【题目详解】因为,所以.因为,所以.故选:D【题目点拨】本题主要考查不等式的性质,属于简单题.8、B【解题分析】
不难发现从而可得【题目详解】,故选B.【题目点拨】本题考查利用指数函数和对数函数的单调性比较数大小.9、A【解题分析】
直接模拟程序框图运行,即可得出结论.【题目详解】模拟程序框图的运行过程如下:输入,进入判断结构,则,,输出,故选:A.【题目点拨】本题主要考查程序框图,一般求输出结果时,常模拟程序运行,列表求解.10、B【解题分析】
连接,可证是异面直线与所成的角或其补角,求出此角即可.【题目详解】连接,因为,分别为棱,的中点,所以,又正方体中,所以是异面直线与所成的角或其补角,是等边三角形,=60°.所以异面直线与所成的角为60°.故选:B.【题目点拨】本题考查异面直线所成的角,解题时需根据定义作出异面直线所成的角,同时给出证明,然后在三角形中计算.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
利用斜二测直观图的画图规则,可得为一个直角三角形,且,得,从而得到边上的中线的实际长度为.【题目详解】利用斜二测直观图的画图规则,平行于轴或在轴上的线段,长度保持不变;平行于轴或在轴上的线段,长度减半,利用逆向原则,所以为一个直角三角形,且,所以,所以边上的中线的实际长度为.【题目点拨】本题考查斜二测画法的规则,考查基本识图、作图能力.12、【解题分析】
与直线垂直的直线方程可设为,再将点的坐标代入运算即可得解.【题目详解】解:与直线l:垂直的直线方程可设为,又该直线过点,则,则,即点且与直线l:垂直的直线方程为,故答案为:.【题目点拨】本题考查了与已知直线垂直的直线方程的求法,属基础题.13、【解题分析】由题意可得,解得.
∴等差数列的前三项为-1,1,1.
则1.
故答案为.14、【解题分析】
设出点P、Q的坐标,利用平面向量的坐标运算以及两圆相交的条件求出实数m的取值范围.【题目详解】设点,由得,由点在圆上,得,又在圆上,,与有交点,则,解得故实数m的取值范围为.故答案为:【题目点拨】本题考查了向量的坐标运算、利用圆与圆的位置关系求参数的取值范围,属于中档题.15、18【解题分析】
利用,化简得到数列是首项为,公比为的等比数列,利用,即可求解.【题目详解】,即所以数列是首项为,公比为的等比数列即所以故答案为:【题目点拨】本题主要考查了与的关系以及等比数列的通项公式,属于基础题.16、【解题分析】
先求出,可得,再代值计算即可.【题目详解】.故答案为:【题目点拨】本题考查了等差数列的前项和公式、累乘相消法,考查了学生的计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)利用切化成弦和余弦定理对等式进行化简,得角的正弦值;(2)利用成正弦定理把边化成角,从而实现的周长用角B的三角函数进行表示,即周长,再根据锐角三角形中角,求得函数值域.【题目详解】(1)由,得到,又,所以.(2),,设周长为,由正弦定理知,由合分比定理知,即,,即.又因为为锐角三角形,所以.,周长.【题目点拨】对运动变化问题,首先要明确变化的量是什么?或者选定什么量为变量?然后,利用函数与方程思想,把所求的目标表示成关于变量的函数,再研究函数性质进行问题求解.18、(Ⅰ);(Ⅱ).【解题分析】
(Ⅰ)∵,,∵,∴,即,①又,②由①②联立方程解得,,.∴;(Ⅱ)∵,即,,∴,,又∵,,∴.19、(1)证明见解析;(2)证明见解析.【解题分析】
(1)利用线面平行的性质定理可得线线平行,最后利用平行公理可以证明出;(2)利用线面垂直的判定定理可以证明线面垂直,利用线面垂直的性质可以证明线线垂直,利用平行线的性质,最后证明出.【题目详解】证明(1)因为平面,平面平面,平面,所以有,同理可证出,根据平行公理,可得;(2)因为,,,平面,所以平面,而平面,所以,由(1)可知,所以.【题目点拨】本题考查了线面平行的性质定理,线面垂直的判定定理、以及平行公理的应用.20、(1),;(2).【解题分析】
(1)根据等差数列{}中,=1,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+S2=12,,设出基本元素,得到其通项公式;(2)由于,所以,那么利用裂项求和可以得到结论.【题目详解】(1)设:{}的公差为,因为,所以,解得=1或=-4(舍),=1.故,;(2)因为故.本题主要是考查了等差数列和等比数列的通项公式和前n项和,以及数列求和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024技术开发合同服务内容具体规定
- 2025年垃圾收转装备项目立项申请报告模板
- 25挑山工 说课稿-2023-2024学年语文四年级下册统编版
- 12《低碳生活每一天》(说课稿)-部编版道德与法治四年级上册
- 年度工业定制电源战略市场规划报告
- 2024年云南轻纺职业学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- AI新技术产品发布
- 必考点16 共圆中国梦(原卷版)
- 九年级道德与法治第一次月考卷01(全解全析)(统编版)
- 绵阳2024下半年四川绵阳盐亭县医疗卫生事业单位招聘高层次专业技术人才7人历年参考题库(频考版)含答案解析
- 新疆塔城地区(2024年-2025年小学六年级语文)部编版期末考试(下学期)试卷及答案
- 四人合伙投资协议书范本
- 2024年9月时事政治试题带答案
- 反射疗法师3级考试题库(含答案)
- 汽车供应商审核培训
- 《计算机网络 》课件第1章
- 山东省济南市2023-2024学年高二上学期期末考试地理试题 附答案
- 期末复习试题1(试题)-2024-2025学年二年级上册数学北师大版
- 1《地球的表面》说课稿-2024-2025学年科学五年级上册教科版
- 汽车以租代购合同完整版完整版
- 音乐制作基础知识单选题100道及答案解析
评论
0/150
提交评论