一次函数的专题复习-最经典最全_第1页
一次函数的专题复习-最经典最全_第2页
一次函数的专题复习-最经典最全_第3页
一次函数的专题复习-最经典最全_第4页
一次函数的专题复习-最经典最全_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第下列图象中不可能是一次函数的图象的是()xyxyOxyOxyOxyOD.C.B.A.OyxOyxOyxOOyxOyxOyxOyxD.C.B.A.(3)已知一次函数,其在直角坐标系中的图象大体是()(4)在同一坐标系内,如图所示,直线L1∶y=(k-2)x+k和L2∶y=kx的位置不可能为()考点4、一次函数的性质例4.(1)已知一次函数y=(1﹣m)x+m﹣2,当m时,y随x的增大而增大.(2)已知点A(-4,a),B(-2,b)都在一次函数y=x+k(k为常数)的图像上,则a与b的大小关系是a____b(填”<””=”或”>”)(3)已知一次函数y=(1-2m)x+m-1,若函数y随x的增大而减小,并且函数的图象经过二、三、四象限,求m的取值范围.解:练习1..如图,是函数的一部分图像,根据图像回答。(1)自变量x的取值范围是什么?(2)当x取什么值时,y有最小值?最小值是多少?(3)在(1)中x的变化范围内,y随x的增大而怎样变化?2.已知一次函数y=(3-k)x-2k+18,(1)k为何值时,它的图像经过原点;(2)k为何值时,它的图像经过点(0,-2);(3)k为何值时,它的图像与y轴的交点在x轴的上方;(4)k为何值时,它的图像平行于直线y=-x;(5)k为何值时,y随x的增大而减小.考点5、图像平移例5.(1)直线和的位置关系是,直线可以分别看作是直线向平移个单位得到的;向平移个单位得到的。(2)将直线y=-2x+3向下平移5个单位,得到直线。(3)函数y=kx-4的图象平行于直线y=-2x,求函数若直线的解析式为;(4)直线y=2x-3可以由直线y=2x经过单位而得到;直线y=-3x+2可以由直线y=-3x经过而得到;直线y=x+2可以由直线y=x-3经过而得到。求一次函数解析式的专项练习待定系数法是求解一次函数表达式的基本方法,但在一些问题中,往往给出多样的条件让你求解,体现了函数表达式与其性质、图象以及其它相关知识的联系.下面举例说明之,供参考.考点1、已知两点例1.(1)已知一次函数图象经过A(-2,-3),B(1,3)两点.=1\*GB3①求这个一次函数解析式.=2\*GB3②试判断点P(-1,1)是否在这个一次函数的图象上?解:(2)已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。考点2、已知一点例2.(1)已知一次函数y=kx+3的图像过点(2,-1),求这个函数的解析式。解:(2)已知直线y=kx+b与直线y=4x+6平行,且经过(1,2)函数解析式为__。(3)直线在y轴上的截距为2,且经过点(1,-2),其解析式为考点3、已知图像例3.=1\*GB2⑴一次函数的图像如图所示,则该函数的解析式为__________。=2\*GB2⑵已知函数图像如图,求其解析式。考点4、已知变量取值例4.(1)一次函数y=kx+b的自变量x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9,求此函数的解析式。解:变式(2)如果一次函数y=kx+b的自变量x的取值范围是-2≤x<6,相应函数值范围是-11<y≤9,函数解析式为___________.解:考点5、已知两直线交点例5.(1)一次函数y=kx+5与直线y=2x-1交于点P(2,m),求k、m的值(2)函数y=kx+b的图象与另一个一次函数y=-2x-1的图象相交于y轴上的点A,且x轴下方的一点B(3,n)在一次函数y=kx+b的图象上,n满足关系n2=9.求这个函数的解析式.考点6、交点及直线围成的面积问题例6.(1)已知直线y=2x+b与x轴、y轴分别交于点A、B,且△AOB的面积是9,求b的值.(2)已知直线y=kx-6与x轴、y轴分别交于点A、B,且△AOB的面积是9,求k的值.(3)一次函数y=kx+b的图象过点A(3,0)且与两坐标轴围成的三角形的面积是9,求该一次函数的解析式.(4)已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数y=EQ\F(1,2)x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形面积.练习(1).已知直线y=2x-6和直线y=-2x+2,=1\*GB3①求两条直线与x轴围成的三角形的面积;=2\*GB3②求两条直线与y轴围成的三角形的面积。(2)已知直线l1:y=2x-6和直线l2:y=kx+b交于点(2,m),两直线与x轴围成的三角形的面积2,求直线l2的解析式.(3)已知直线l1:y=2x-6与x轴、y轴分别交于点A、B,直线l2:y=kx+b过(2,-2)将△ABO的面积分为2:7,求:直线l2的解析式.l1(4)如图,已知直线经过点和点,另一条直线经过点,且与轴相交于点.若的面积为3,求的值.l17、知识拓展例7.如图4,直线y=x+3的图象与x轴、y轴交于A、B两点.直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:3两部分.求直线l的解析式.练习1.如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,△AOP的面积为6;求△COP的面积;求点A的坐标及p的值;若△BOP与△DOP的面积相等,求直线BD的函数解析式。一次函数与方程、不等式综合知识点1、一次函数与一元一次方程的关系直线与x轴交点的横坐标,就是一元一次方程的解。求直线与x轴交点时,可令,得到方程,解方程得,直线交x轴于,就是直线与x轴交点的横坐标。2、一次函数与一元一次不等式的关系任何一元一次不等式都可以转化为或(为常数,)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。3、一次函数与二元一次方程(组)的关系一次函数的解析式本身就是一个二元一次方程,直线上有无数个点,每个点的横纵坐标都满足二元一次方程,因此二元一次方程的解也就有无数个。例题精讲例题精讲考点1、一次函数与一元一次方程综合已知直线和交于轴上同一点,的值为()A. B. C. D.练习1.已知一次函数与的图象相交于点,则______.练习2已知一次函数的图象经过点,,则不求的值,可直接得到方程的解是______.考点2、一次函数与一元一次不等式综合已知,.当时,x的取值范围是()A. B. C. D.练习已知一次函数(1)当取何值时,函数的值在与之间变化?(2)当从到3变化时,函数的最小值和最大值各是多少?2.直线经过,两点,则不等式的解集为______.已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:(1)当时,的值;(2)x为何值时,?(3)当时,的值范围;(4)当时,的值范围.考点三、一次函数与二元一次方程(组)综合已知直线与的交点为(-5,-8),则方程组的解是________.练习已知方程组(为常数,)的解为,则直线和直线的交点坐标为________.已知,是方程组的解,那么一次函数________和________的交点是________.一次函数与的图象如图,则下列结论①;②;③当时,中,正确的个数是()A.0 B.1 C.2 D.34.如图,直线与轴交于点,则时,的取值范围是()A. B. C. D.5.一次函数的图象如图所示,当时,的取值范围是()A. B. C. D.一次函数的实际应用考点1、从图像获取信息例1.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从乙地出发后多长时间再与货车相遇。y(千米)x(小时)y(千米)x(小时)106O600出租车客车一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为千米,出租车离甲地的距离为千米,两车行驶的时间为小时,、关于的函数图像如右图所示:(1)根据图像,直接写出、关于的函数关系式;(2)若两车之间的距离为千米,请写出关于的函数关系式;(3)甲、乙两地间有、两个加油站,相距200千米,若客车进入加油站时,出租车恰好进入加油站,求加油站离甲地的距离.2.甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC-CD-DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.3.如图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有()A、1个B、2个C、3个D、4个考点2、方案选择例2.A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台,已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元。(1)设B市运往C村机器x台,求总运费W(元)关于x的函数关系式。(2)若要求总运费不超过9000元,共有几种调运方案。(3)求出总运费最低的调运方案,最低运费是多少?练习某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元.小彬经常来该店租碟,若每月租碟数量为x张.(1)写出零星租碟方式应付金额y1(元)与租碟数量x(张)之间的函数关系式:(2)写出会员卡租碟方式应付金额y2(元)与租碟数量x(张)之间的函数关系式:(3)小彬选取哪种租碟方式更合算?2.某地电话拨号入网有两种收费方式,用户可以任选其一:(A)计时制:0.05元/分;(B)包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分.(1)请你分别写出两种收费方式下用户每月应支付的费用y(元)与上网时间x(小时)之间的函数关系式:计时制:包月制:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论