版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省乾安七中2024届数学高一下期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有().A. B. C. D.2.下列命题正确的是()A.若,则 B.若,则C.若,,则 D.若,,则3.若满足,且的最小值为,则实数的值为()A. B. C. D.4.如图,E是平行四边形ABCD的边AD的中点,设等差数列的前n项和为,若,则()A.25 B. C. D.555.已知是偶函数,且时.若时,的最大值为,最小值为,则()A.2 B.1 C.3 D.6.若平面∥平面,直线∥平面,则直线与平面的关系为()A.∥ B. C.∥或 D.7.()A.0 B. C. D.18.已知,,,则与的夹角为()A. B. C. D.9.下列函数中,在区间上为增函数的是A. B.C. D.10.已知双曲线的焦点与椭圆的焦点相同,则双曲线的离心率为()A. B. C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.过点直线与轴的正半轴,轴的正半轴分别交于、两点,为坐标原点,当最小时,直线的一般方程为______.12.若满足约束条件则的最大值为__________.13.若数列是等差数列,则数列也为等差数列,类比上述性质,相应地,若正项数列是等比数列,则数列_________也是等比数列.14.已知棱长都相等正四棱锥的侧面积为,则该正四棱锥内切球的表面积为________.15.对于任意实数x,不等式恒成立,则实数a的取值范围是______16._________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆A:,圆B:.(Ⅰ)求经过圆A与圆B的圆心的直线方程;(Ⅱ)已知直线l:,设圆心A关于直线l的对称点为,点C在直线l上,当的面积为14时,求点C的坐标.18.2019年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,按阅读时间分组:第一组[0,5),第二组[5,10),第三组[10,15),第四组[15,20),第五组[20,25],绘制了频率分布直方图如下图所示.已知第三组的频数是第五组频数的3倍.(1)求的值,并根据频率分布直方图估计该校学生一周课外阅读时间的平均值;(2)现从第三、四、五这3组中用分层抽样的方法抽取6人参加校“中华诗词比赛”.经过比赛后,从这6人中随机挑选2人组成该校代表队,求这2人来自不同组别的概率.19.如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的处恰有一可旋转光源满足甲水果生长的需要,该光源照射范围是,点在直径上,且.(1)若,求的长;(2)设,求该空地产生最大经济价值时种植甲种水果的面积.20.已知函数.(1)求函数f(x)的最小值及f(x)取到最小值时自变量x的集合;(2)指出函数y=f(x)的图象可以由函数y=sinx的图象经过哪些变换得到;21.在四棱锥中,底面是平行四边形,平面,点,分别为,的中点,且,,.(1)证明:平面;(2)求直线与平面所成角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
根据所给数据,分别求出平均数为a,中位数为b,众数为c,然后进行比较可得选项.【题目详解】,中位数为,众数为.故选:B.【题目点拨】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.2、C【解题分析】
对每一个选项进行判断,选出正确的答案.【题目详解】A.若,则,取不成立B.若,则,取不成立C.若,,则,正确D.若,,则,取不成立故答案选C【题目点拨】本题考查了不等式的性质,找出反例是解题的关键.3、B【解题分析】
首先画出满足条件的平面区域,然后根据目标函数取最小值找出最优解,把最优解点代入目标函数即可求出的值.【题目详解】画出满足条件的平面区域,如图所示:,由,解得:,由得:,显然直线过时,z最小,∴,解得:,故选B.【题目点拨】本题主要考查简单的线性规划,已知目标函数最值求参数的问题,属于常考题型.4、D【解题分析】
根据向量的加法和平面向量定理,得到和的值,从而得到等差数列的公差,根据等差数列求和公式,得到答案.【题目详解】因为E是平行四边形ABCD的边AD的中点,所以,因为,所以,,所以等差数列的公差,所以.故选:D.【题目点拨】本题考查向量的加法和平面向量定理,等差数列求和公式,属于简单题.5、B【解题分析】
根据函数的对称性得到原题转化为直接求的最大和最小值即可.【题目详解】因为函数是偶函数,函数图像关于y轴对称,故得到时,的最大值和最小值,与时的最大值和最小值是相同的,故直接求的最大和最小值即可;根据对勾函数的单调性得到函数的最小值为,,故最大值为,此时故答案为:B.【题目点拨】这个题目考查了函数的奇偶性和单调性的应用,属于基础题。对于函数的奇偶性,主要是体现函数的对称性,这样可以根据对称性得到函数在对称区间上的函数值的关系,使得问题简化.6、C【解题分析】
利用空间几何体,发挥直观想象,易得直线与平面的位置关系.【题目详解】设平面为长方体的上底面,平面为长方体的下底面,因为直线∥平面,所以直线通过平移后,可能与平面平行,也可能平移到平面内,所以∥或.【题目点拨】空间中点、线、面位置关系问题,常可以借助长方体进行研究,考查直观想象能力.7、C【解题分析】试题分析:考点:两角和正弦公式8、C【解题分析】
设与的夹角为,计算出、、的值,再利用公式结合角的取值范围可求出的值.【题目详解】设与的夹角为,则,,,另一方面,,,,因此,,,因此,,故选C.【题目点拨】本题考查利用平面向量的数量积计算平面向量的夹角,解题的关键就是计算出、、的值,考查计算能力,属于中等题.9、A【解题分析】试题分析:对A,函数在上为增函数,符合要求;对B,在上为减函数,不符合题意;对C,为上的减函数,不符合题意;对D,在上为减函数,不符合题意.故选A.考点:函数的单调性,容易题.10、B【解题分析】根据椭圆可以知焦点为,离心率,故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
设直线的截距式方程为,利用该直线过可得,再利用基本不等式可求何时即取最小值,从而得到相应的直线方程.【题目详解】设直线的截距式方程为,其中且.因为直线过,故.所以,由基本不等式可知,当且仅当时等号成立,故当取最小值时,直线方程为:.填.【题目点拨】直线方程有五种形式,常用的形式有点斜式、斜截式、截距式、一般式,垂直于的轴的直线没有点斜式、斜截式和截距式,垂直于轴的直线没有截距式,注意根据题设所给的条件选择合适的方程的形式,特别地,如果考虑的问题是与直线、坐标轴围成的直角三角形有关的问题,可考虑利用截距式.12、【解题分析】
作出可行域,根据目标函数的几何意义可知当时,.【题目详解】不等式组表示的可行域是以为顶点的三角形区域,如下图所示,目标函数的最大值必在顶点处取得,易知当时,.【题目点拨】线性规划问题是高考中常考考点,主要以选择及填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等.13、【解题分析】
利用类比推理分析,若数列是各项均为正数的等比数列,则当时,数列也是等比数列.【题目详解】由数列是等差数列,则当时,数列也是等差数列.类比上述性质,若数列是各项均为正数的等比数列,则当时,数列也是等比数列.故答案为:【题目点拨】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).14、【解题分析】
根据侧面积求出正四棱锥的棱长,画出组合体的截面图,根据三角形的相似求得四棱锥内切球的半径,于是可得内切球的表面积.【题目详解】设正四棱锥的棱长为,则,解得.于是该正四棱锥内切球的大圆是如图△PMN的内切圆,其中,.∴.设内切圆的半径为,由∽,得,即,解得,∴内切球的表面积为.【题目点拨】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.15、【解题分析】
对a分类讨论,利用判别式,即可得到结论.【题目详解】(1)a﹣2=0,即a=2时,﹣4<0,恒成立;(2)a﹣2≠0时,,解得﹣2<a<2,∴﹣2<a≤2故答案为:.【题目点拨】对于二次函数的研究一般从以几个方面研究:一是,开口;二是,对称轴,主要讨论对称轴与区间的位置关系;三是,判别式,决定于x轴的交点个数;四是,区间端点值.16、3【解题分析】
分式上下为的二次多项式,故上下同除以进行分析.【题目详解】由题,,又,故.
故答案为:3.【题目点拨】本题考查了分式型多项式的极限问题,注意:当时,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I)(Ⅱ)或【解题分析】
(Ⅰ)由已知求得,的坐标,再由直线方程的两点式得答案;(Ⅱ)求出的坐标,再求出以及所在直线方程,设,利用点到直线的距离公式求出到所在直线的距离,代入三角形面积公式解得值,进而可得的坐标.【题目详解】(Ⅰ)将圆:化为:,所以,圆:化为:,所以,所以经过圆与圆的圆心的直线方程为:,即.(Ⅱ)如图,设,由题意可得,解得,即,∴,所在直线方程为,即,设,则到所在直线的距离,由,解得或,∴点的坐标为或.【题目点拨】本题考查直线与圆位置关系的应用,考查点关于直线的对称点的求法,考查运算求解能力,属于中档题.18、(1)a=0.06,平均值为12.25小时(2)【解题分析】
(1)由频率分布直方图可得第三组和第五组的频率之和,第三组的频率,由此能求出a和该样本数据的平均数,从而可估计该校学生一周课外阅读时间的平均值;(2)从第3、4、5组抽取的人数分别为3、2、1,设为A,B,C,D,E,F,利用列举法能求出从该6人中选拔2人,从而得到这2人来自不同组别的概率.【题目详解】(1)由频率分布直方图可得第三组和第五组的频率之和为,第三组的频率为∴该样本数据的平均数所以可估计该校学生一周课外阅读时间的平均值为小时.(2)易得从第3、4、5组抽取的人数分别为3、2、1,设为,则从该6人中选拔2人的基本事件有:共15种,其中来自不同的组别的基本事件有:,共11种,∴这2人来自不同组别的概率为.【题目点拨】本题考查平均数、概率的求法,考查古典概型、频率分布直方图等基础知识,考查运算求解能力,是基础题.19、(1)1或3(2)【解题分析】
试题分析:(1)在中,因为,,,所以由余弦定理,且,,所以,解得或(2)该空地产生最大经济价值等价于种植甲种水果的面积最大,所以用表示出,再利用三角函数求最值得试题解析:(1)连结,已知点在以为直径的半圆周上,所以为直角三角形,因为,,所以,,在中由余弦定理,且,所以,解得或,(2)因为,,所以,所以,在中由正弦定理得:所以,在中,由正弦定理得:所以,若产生最大经济效益,则的面积最大,,因为,所以所以当时,取最大值为,此时该地块产生的经济价值最大考点:①解三角形及正弦定理的应用②三角函数求最值20、(1),此时自变量的集合是(2)见解析【解题分析】
(1)根据三角函数的性质,即可求解;(2)根据三角函数的图形变换规律,即可得到。【题目详解】(1),此时,,即,,即此时自变量的集合是.(2)把函数的图象向右平移个单位长度,得到函数的图象,再把函数的图象上所有点的纵坐标不变,横坐标变为原来的,得到函数的图象,最后再把函数的图象上所有点的横坐标不变,纵坐标变为原来的2倍,得到函数的图象.【题目点拨】本题主要考查正弦函数的性质应用,以及三角函数的图象变换规律的应用。21、(1)见解析(2)【解题分析】
(1)取中点,连接,,构造平行四边形,由线线平行得到线面平行;(2)根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 模板工程劳务分包班组合同
- 租赁合同终止的原因分析
- 饲料行业博览会购销合同
- 专业财务外包协议范本
- 校园物资订购协议
- 政府单位采购合同中的云计算采购
- 家庭护理家政服务雇佣合同
- 高效消毒清洁协议
- 典型服务合同示范文本
- 农村自来水安装协议范本
- 减少巡回护士手术中外出次数品管圈汇报书模板课件
- 小班 社会语言 懂礼貌的好宝宝 课件(互动版)
- 2022-2023学年小学一年级语文上册无纸笔化测试评价方案(含测试题)
- 5分钟安全五人小品剧本
- 苏教版六年级下册数学例6比例尺的意义【含答案】
- DBJ33-T 1286-2022 住宅工程质量常见问题控制标准
- 西门子变频器选型手册
- 教育研究导论首都师范
- 《国际关系理论》PPT课件
- 公司层面风险评估操作手册
- (附件)-架空输电线路状态评价细则(试行)
评论
0/150
提交评论