2024届黑龙江省佳木斯市汤原高中数学高一下期末监测模拟试题含解析_第1页
2024届黑龙江省佳木斯市汤原高中数学高一下期末监测模拟试题含解析_第2页
2024届黑龙江省佳木斯市汤原高中数学高一下期末监测模拟试题含解析_第3页
2024届黑龙江省佳木斯市汤原高中数学高一下期末监测模拟试题含解析_第4页
2024届黑龙江省佳木斯市汤原高中数学高一下期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省佳木斯市汤原高中数学高一下期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,下列不等式一定成立的是()A. B. C. D.2.《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽丈,长丈;上棱长丈,无宽,高丈(如图).问它的体积是多少?”这个问题的答案是()A.立方丈 B.立方丈C.立方丈 D.立方丈3.在中,,,,则()A. B. C. D.4.已知圆:关于直线对称的圆为圆:,则直线的方程为A. B. C. D.5.在平面直角坐标系中,为坐标原点,为单位圆上一点,以轴为始边,为终边的角为,,若将绕点顺时针旋转至,则点的坐标为()A. B. C. D.6.已知一组正数的平均数为,方差为,则的平均数与方差分别为()A. B. C. D.7.定义平面凸四边形为平面上没有内角度数大于的四边形,在平面凸四边形中,,,,,设,则的取值范围是()A. B. C. D.8.若,则()A. B. C. D.9.已知向量,,则向量的夹角的余弦值为()A. B. C. D.10.设等比数列的前项和为,若,,则()A.14 B.18 C.36 D.60二、填空题:本大题共6小题,每小题5分,共30分。11.圆的一条经过点的切线方程为______.12.若等差数列的前项和,且,则______________.13.若直线平分圆,则的值为________.14.数列通项公式,前项和为,则________.15.已知等差数列的前项和为,且,,则;16.已知函数,下列说法:①图像关于对称;②的最小正周期为;③在区间上单调递减;④图像关于中心对称;⑤的最小正周期为;正确的是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知在三棱锥S-ABC中,∠ACB=,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.18.在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求△ABC的面积.19.已知圆心为的圆过点,且与直线相切于点。(1)求圆的方程;(2)已知点,且对于圆上任一点,线段上存在异于点的一点,使得(为常数),试判断使的面积等于4的点有几个,并说明理由。20.已知关于的不等式.(1)若不等式的解集为,求实数的值;(2)若不等式的解集为,求实数的取值范围.21.(1)己知直线,求与直线l平行且到直线l距离为2的直线方程;(2)若关于x的不等式的解集是的子集,求实数a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

通过反例、作差法、不等式的性质可依次判断各个选项即可.【题目详解】若,,则,错误;,则,错误;,,则,错误;,则等价于,成立,正确.本题正确选项:【题目点拨】本题考查不等式的性质,属于基础题.2、A【解题分析】过点分别作平面和平面垂直于底面,所以几何体的体积分为三部分中间是直三棱柱,两边是两个一样的四棱锥,所以立方丈,故选A.3、D【解题分析】

直接用正弦定理直接求解边.【题目详解】在中,,,由余弦定理有:,即故选:D【题目点拨】本题考查利用正弦定理解三角形,属于基础题.4、A【解题分析】

根据对称性,求得,求得圆的圆心坐标,再根据直线l为线段C1C2的垂直平分线,求得直线的斜率,即可求解,得到答案.【题目详解】由题意,圆的方程,可化为,根据对称性,可得:,解得:或(舍去,此时半径的平方小于0,不符合题意),此时C1(0,0),C2(-1,2),直线C1C2的斜率为:,由圆C1和圆C2关于直线l对称可知:直线l为线段C1C2的垂直平分线,所以,解得,直线l又经过线段C1C2的中点(,1),所以直线l的方程为:,化简得:,故选A【题目点拨】本题主要考查了圆与圆的位置关系的应用,其中解答中熟记两圆的位置关系,合理应用圆对称性是解答本题的关键,其中着重考查了推理与运算能力,属于基础题.5、C【解题分析】

由题意利用任意角的三角函数的定义,诱导公式,求得点的坐标.【题目详解】为单位圆上一点,以轴为始边,为终边的角为,,若将绕点顺时针旋转至,则点的横坐标为,点的纵坐标为,故点的坐标为.故选C.【题目点拨】本题主要考查任意角的三角函数的定义,诱导公式,考查基本的运算求解能力.6、C【解题分析】

根据平均数的性质和方差的性质即可得到结果.【题目详解】根据平均数的线性性质,以及方差的性质:将一组数据每个数扩大2倍,且加1,则平均数也是同样的变化,方差变为原来的4倍,故变换后数据的平均数为:;方差为4.故选:C.【题目点拨】本题考查平均数和方差的性质,属基础题.7、D【解题分析】

先利用余弦定理计算,设,将表示为的函数,再求取值范围.【题目详解】如图所示:在中,利用正弦定理:当时,有最小值为当时,有最大值为(不能取等号)的取值范围是故答案选D【题目点拨】本题考查了利用正余弦定理计算长度范围,将表示为的函数是解题的关键.8、D【解题分析】.分子分母同时除以,即得:.故选D.9、C【解题分析】

先求出向量,再根据向量的数量积求出夹角的余弦值.【题目详解】∵,∴.设向量的夹角为,则.故选C.【题目点拨】本题考查向量的线性运算和向量夹角的求法,解题的关键是求出向量的坐标,然后根据数量积的定义求解,注意计算的准确性,属于基础题.10、A【解题分析】

由已知结合等比数列的求和公式可求,,q2,然后整体代入到求和公式即可求.【题目详解】∵等比数列{an}中,S2=2,S4=6,∴q≠1,则,联立可得,2,q2=2,S62×(1﹣23)=1.故选:A.【题目点拨】本题主要考查了等比数列的求和公式的简单应用,考查了整体代入的运算技巧,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据题意,设为,设过点圆的切线为,分析可得在圆上,求出直线的斜率,分析可得直线的斜率,由直线的点斜式方程计算可得答案.【题目详解】根据题意,设为,设过点圆的切线为,圆的方程为,则点在圆上,则,则直线的斜率,则直线的方程为,变形可得,故答案为.【题目点拨】本题考查圆的切线方程,注意分析点与圆的位置关系.12、【解题分析】

设等差数列的公差为,根据题意建立和的方程组,解出这两个量,即可求出的值.【题目详解】设等差数列的公差为,由题意得,解得,因此,.故答案为:.【题目点拨】本题考查等差数列中项的计算,解题的关键就是要建立首项和公差的方程组,利用这两个基本量来求解,考查运算求解能力,属于基础题.13、1【解题分析】

把圆的一般式方程化为标准方程得到圆心,根据直线过圆心,把圆心的坐标代入到直线的方程,得到关于的方程,解方程即可【题目详解】圆的标准方程为,则圆心为直线过圆心解得故答案为【题目点拨】本题考查的是直线与圆的位置关系,解题的关键是求出圆心的坐标,属于基础题14、1【解题分析】

利用裂项求和法求出,取极限进而即可求解.【题目详解】,故,所以,故答案为:1【题目点拨】本题考查了裂项求和法以及求极限值,属于基础题.15、1【解题分析】

若数列{an}为等差数列则Sm,S2m-Sm,S3m-S2m仍然成等差数列.所以S10,S20-S10,S30-S20仍然成等差数列.因为在等差数列{an}中有S10=10,S20=30,所以S30=1.故答案为1.16、②③⑤【解题分析】

将函数解析式改写成:,即可作出函数图象,根据图象即可判定.【题目详解】由题:,,所以函数为奇函数,,是该函数的周期,结合图象分析是其最小正周期,,作出函数图象:可得,该函数的最小正周期为,图像不关于对称;在区间上单调递减;图像不关于中心对称;故答案为:②③⑤【题目点拨】此题考查三角函数图象及其性质的辨析,涉及周期性,对称性和单调性,作为填空题,恰当地利用图象解决问题能够起到事半功倍的作用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、证明见解析【解题分析】

先由SA⊥面ABC,得BC⊥SA,又BC⊥AC,得BC⊥面SAC,故BC⊥AD,又SC⊥AD,所以AD⊥面SBC.【题目详解】证明:因为SA⊥面ABC,BC面ABC,所以BC⊥SA;又由∠ACB=,得BC⊥AC,且AC、SA是面SAC内的两相交线,所以BC⊥面SAC;又AD面SAC,所以BC⊥AD,又已知SC⊥AD,且BC、SC是面SBC内两相交线,所以AD⊥面SBC.【题目点拨】本题考查了线面垂直的证明与性质,属于基础题.18、(1)(2)21【解题分析】

(1)由,求得,再由正弦定理,即可求解.(2)由(1)和,求得,再由三角形的面积公式,即可求解.【题目详解】(1)由题意,因为,且为三角形的内角,所以,由正弦定理,可得,即,解得.(2)由(1)和,则,由三角形的面积公式,可得.【题目点拨】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.19、(1)(2)使的面积等于4的点有2个【解题分析】

(1)利用条件设圆的标准方程,由圆过点求t,确定圆方程.(2)设,由确定阿波罗尼斯圆方程,与圆C为同一圆,可得,求出N点的坐标,建立ON方程,,再利用面积求点P到直线的距离,判断与ON平行且距离为的两条直线与圆C的位置关系可得结论.【题目详解】(1)依题意可设圆心坐标为,则半径为,圆的方程可写成,因为圆过点,∴,∴,则圆的方程为。(2)由题知,直线的方程为,设满足题意,设,则,所以,则,因为上式对任意恒成立,所以,且,解得或(舍去,与重合)。所以点,则,直线方程为,点到直线的距离,若存在点使的面积等于4,则,∴。①当点在直线的上方时,点到直线的距离的取值范围为,∵,∴当点在直线的上方时,使的面积等于4的点有2个;②当点在直线的下方时,点到直线的距离的取值范围为,∵,∴当点在直线的下方时,使的面积等于4的点有0个,综上可知,使的面积等于4的点有2个。【题目点拨】本题考查圆的方程,直线与圆的位置关系,圆的第二定义,考查运算能力,分析问题解决问题的能力,属于难题.20、(1)(2)【解题分析】

(1)不等式的解集为说明和1是的两个实数根,运用韦达定理,可以求出实数的值;(2)不等式的解集为,只需,或即可,解不等式组求出实数的取值范围.【题目详解】(1)若关于的不等式的解集为,则和1是的两个实数根,由韦达定理可得,求得.(2)若关于的不等式解集为,则,或,求得或,故实数的取值范围为.【题目点拨】本题考查了已知一元二次不等式的解集求参问题,考查了数学运算能力21、(1)或;(2)【解题分析】

(1)根据两直线平行,设所求直线为,利用两平行线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论