江苏省常州市省常中2024届数学高一下期末经典试题含解析_第1页
江苏省常州市省常中2024届数学高一下期末经典试题含解析_第2页
江苏省常州市省常中2024届数学高一下期末经典试题含解析_第3页
江苏省常州市省常中2024届数学高一下期末经典试题含解析_第4页
江苏省常州市省常中2024届数学高一下期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省常州市省常中2024届数学高一下期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点的直线的斜率为,则等于()A. B.10 C.2 D.42.对于函数f(x)=2sinxcosx,下列选项中正确的是()A.f(x)在(,)上是递增的 B.f(x)的图象关于原点对称C.f(x)的最小正周期为 D.f(x)的最大值为23.下列命题中正确的是()A. B.C. D.4.在△ABC中,若a=2bsinA,则B为A. B. C.或 D.或5.在锐角中ΔABC,角A,B所对的边长分别为a,b.若2asinA.π12B.π6C.π6.如图,在三棱柱中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则与平面所成的角为()A. B. C. D.7.函数的部分图象如图所示,为了得到的图象,只需将的图象A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位8.已知,则的最小值为A.3 B.4 C.5 D.69.若圆的半径为4,a、b、c为圆的内接三角形的三边,若abc=16,则三角形的面积为()A.2 B.8 C. D.10.直线与圆相交于M,N两点,若.则的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知常数θ∈(0,π2),若函数f(x)在Rf(x)=2sinπx-1≤x≤1log是________.12.中,,,,则______.13.九连环是我国从古至今广泛流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合面为一”.在某种玩法中,用表示解下个圆环所需的移动最少次数,满足,且,则解下4个环所需的最少移动次数为_____.14.一圆柱的侧面展开图是长、宽分别为3、4的矩形,则此圆柱的侧面积是________.15.已知,若直线与直线垂直,则的最小值为_____16.已知中,的对边分别为,若,则的周长的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和为,满足且,数列的前项为,满足(Ⅰ)设,求证:数列为等比数列;(Ⅱ)求的通项公式;(Ⅲ)若对任意的恒成立,求实数的最大值.18.在平面直角坐标系中,曲线与坐标轴的交点都在圆上.(1)求圆的方程;(2)若圆与直线交于,两点,且,求的值.19.的内角A,B,C的对边分别为a,b,c,已知(1)求A;(2)若A为锐角,,的面积为,求的周长.20.已知数列的通项公式为.(1)求这个数列的第10项;(2)在区间内是否存在数列中的项?若有,有几项?若没有,请说明理由.21.已知函数,且函数是偶函数,设(1)求的解析式;(2)若不等式≥0在区间(1,e2]上恒成立,求实数的取值范围;(3)若方程有三个不同的实数根,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

直接应用斜率公式,解方程即可求出的值.【题目详解】因为过点的直线的斜率为,所以有,故本题选B.【题目点拨】本题考查了直线斜率公式,考查了数学运算能力.2、B【解题分析】

解:,是周期为的奇函数,

对于A,在上是递减的,错误;

对于B,是奇函数,图象关于原点对称,正确;

对于C,是周期为,错误;

对于D,的最大值为1,错误;

所以B选项是正确的.3、D【解题分析】

根据向量的加减法的几何意义以及向量数乘的定义即可判断.【题目详解】,,,,故选D.【题目点拨】本题主要考查向量的加减法的几何意义以及向量数乘的定义的应用.4、C【解题分析】,,则或,选C.5、D【解题分析】试题分析:∵2a考点:正弦定理解三角形6、A【解题分析】

取的中点,连接、,作,垂足为点,证明平面,于是得出直线与平面所成的角为,然后利用锐角三角函数可求出.【题目详解】如下图所示,取的中点,连接、,作,垂足为点,是边长为的等边三角形,点为的中点,则,且,在三棱柱中,平面,平面,,,平面,平面,,,,平面,所以,直线与平面所成的角为,易知,在中,,,,,,即直线与平面所成的角为,故选A.【题目点拨】本题考查直线与平面所成角的计算,求解时遵循“一作、二证、三计算”的原则,一作的是过点作面的垂线,有时也可以通过等体积法计算出点到平面的距离,利用该距离与线段长度的比值作为直线与平面所成角的正弦值,考查计算能力与推理能力,属于中等题.7、B【解题分析】试题分析:由图象知,,,,,得,所以,为了得到的图象,所以只需将的图象向右平移个长度单位即可,故选D.考点:三角函数图象.8、C【解题分析】

由,得,则,利用基本不等式,即可求解.【题目详解】由题意,因为,则,所以,当且仅当时,即时取等号,所以的最小值为5,故选C.【题目点拨】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.9、C【解题分析】

试题分析:由正弦定理可知,∴,∴.考点:正弦定理的运用.10、A【解题分析】

可通过将弦长转化为弦心距问题,结合点到直线距离公式和勾股定理进行求解【题目详解】如图所示,设弦中点为D,圆心C(3,2),弦心距,又,由勾股定理可得,答案选A【题目点拨】圆与直线的位置关系解题思路常从两点入手:弦心距、勾股定理。处理过程中,直线需化成一般式二、填空题:本大题共6小题,每小题5分,共30分。11、15【解题分析】

根据f(-1【题目详解】∵函数f(x)在R上恒有f(-1∴f-∴函数周期为4.∵常数θ∈(0,π∴cos∴函数y=f(x)-cosθ-1在区间[-5,14]上零点,即函数y=f(x) (x∈[-5,14])与直线由f(x)=2sinπx由图可知,在一个周期内,函数y=f(x)-cos故函数y=f(x)-cosθ-1在区间故填15.【题目点拨】本题主要考查了函数零点的个数判断,涉及数形结合思想在解题中的运用,属于难题.12、【解题分析】

根据,得到的值,再由余弦定理,得到的值.【题目详解】因为,所以,在中,,,由余弦定理得.所以.故答案为:【题目点拨】本题考查二倍角的余弦公式,余弦定理解三角形,属于简单题.13、7【解题分析】

利用的通项公式,依次求出,从而得到,即可得到答案。【题目详解】由于表示解下个圆环所需的移动最少次数,满足,且所以,,故,所以解下4个环所需的最少移动次数为7故答案为7.【题目点拨】本题考查数列的递推公式,属于基础题。14、12【解题分析】

直接根据圆柱的侧面展开图的面积和圆柱侧面积的关系计算得解.【题目详解】因为圆柱的侧面展开图的面积和圆柱侧面积相等,所以此圆柱的侧面积为.故答案为:12【题目点拨】本题主要考查圆柱的侧面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.15、8【解题分析】

两直线斜率存在且互相垂直,由斜率乘积为-1求得等式,把目标式子化成,运用基本不等式求得最小值.【题目详解】设直线的斜率为,,直线的斜率为,,两条直线垂直,,整理得:,,等号成立当且仅当,的最小值为.【题目点拨】利用“1”的代换,转化成可用基本不等式求最值,考查转化与化归的思想.16、【解题分析】中,由余弦定理可得,∵,∴,化简可得.∵,∴,解得(当且仅当时,取等号).故.再由任意两边之和大于第三边可得,故有,故的周长的取值范围是,故答案为.点睛:由余弦定理求得,代入已知等式可得,利用基本不等式求得,故.再由三角形任意两边之和大于第三边求得,由此求得△ABC的周长的取值范围.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)(Ⅲ)【解题分析】

(Ⅰ)对递推公式变形可得,根据等比数列的定义,即可得证;(Ⅱ)化简可得,然后再利用裂项相消法求和,即可得到结果;(Ⅲ)先求出,然后再利用分组求和求出,然后再利用分离常数法,可得,最后对进行分类讨论,即可求出结果.【题目详解】解:(Ⅰ)由得,变形为:,,且∴数列是以首项为2,公比为的等比数列(Ⅱ)由;(Ⅲ)由(Ⅰ)知数列是以首项为2,公比为的等比数列∴,于是∴=,由得从而,∴当n为偶数时,恒成立,而,∴1当n为奇数时,恒成立,而,∴综上所述,,即的最大值为【题目点拨】本题考查等比数列的定义和通项公式、求和公式的运用,考查数列的裂项相消法求和和分组法求和,考查化简运算能力,属于中档题.18、(1);(2).【解题分析】分析:(1)因为曲线与坐标轴的交点都在圆上,所以要求圆的方程应求曲线与坐标轴的三个交点.曲线与轴的交点为,与轴的交点为.由与轴的交点为关于点(3,0)对称,故可设圆的圆心为,由两点间距离公式可得,解得.进而可求得圆的半径为,然后可求圆的方程为.(2)设,,由可得,进而可得,减少变量个数.因为,,所以.要求值,故将直线与圆的方程联立可得,消去,得方程.因为直线与圆有两个交点,故判别式,由根与系数的关系可得,.代入,化简可求得,满足,故.详解:(1)曲线与轴的交点为,与轴的交点为.故可设的圆心为,则有,解得.则圆的半径为,所以圆的方程为.(2)设,,其坐标满足方程组消去,得方程.由已知可得,判别式,且,.由于,可得.又,所以.由得,满足,故.点睛:⑴求圆的方程一般有两种方法:①待定系数法:如条件和圆心或半径有关,可设圆的方程为标准方程,再代入条件可求方程;如已知圆过两点或三点,可设圆的方程为一般方程,再根据条件求方程;②几何方法:利用圆的性质,如圆的弦的垂直平分线经过圆心,最长的弦为直径,圆心到切线的距离等于半径.(2)直线与圆或圆锥曲线交于,两点,若,应设,,可得.可将直线与圆或圆锥曲线的方程联立消去,得关于的一元二次方程,利用根与系数的关系得两根和与两根积,代入,化简求值.19、(1)或;(2).【解题分析】

(1)由正弦定理将边化为对应角的正弦值,即可求出结果;(2)由余弦定理和三角形的面积公式联立,即可求出结果.【题目详解】(I)由正弦定理得,,即又,或.(II),由余弦定理得,即,而的面积为.的周长为5+.【题目点拨】本题主要考查正弦定理和余弦定理解三角形,属于基础题型.20、(1)(2)只有一项【解题分析】

(1)根据通项公式直接求解(2)根据条件列不等式,解得结果【题目详解】解:(1);(2)解不等式得,因为为正整数,所以,因此在区间内只有一项.【题目点拨】本题考查数列通项公式及其应用,考查基本分析求解能力,属基础题21、(1);(2);(3).【解题分析】

(1)对称轴为,对称轴为,再根据图像平移关系求解;(2)分离参数,转化为求函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论