版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市东仪中学2024届数学高一第二学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知满足条件,则目标函数的最小值为A.0 B.1 C. D.2.如图所示,在正四棱锥中,分别是,,的中点,动点在线段上运动时,下列结论不恒成立的是().A.与异面 B.面 C. D.3.如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全。已知该班学生投篮成绩的中位数是5,则根据统计图,则下列说法错误的是()A.3球以下(含3球)的人数为10B.4球以下(含4球)的人数为17C.5球以下(含5球)的人数无法确定D.5球的人数和6球的人数一样多4.已知函数的图像如图所示,则和分别是()A. B. C. D.5.已知向量满足,.O为坐标原点,.曲线,区域.若是两段分离的曲线,则()A. B. C. D.6.如图,平面ABCD⊥平面EDCF,且四边形ABCD和四边形EDCF都是正方形,则异面直线BD与CE所成的角为()A. B. C. D.7.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙下成平局的概率为()A.50% B.30% C.10% D.60%8.若圆的半径为4,a、b、c为圆的内接三角形的三边,若abc=16,则三角形的面积为()A.2 B.8 C. D.9.若,则下列结论成立的是()A. B.C.的最小值为2 D.10.不等式的解集是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列{an}满足a1=2,a12.若角的终边经过点,则___________.13.在正数数列an中,a1=1,且点an,an-114.已知等比数列的首项为,公比为,其前项和为,下列命题中正确的是______.(写出全部正确命题的序号)(1)等比数列单调递增的充要条件是,且;(2)数列:,,,……,也是等比数列;(3);(4)点在函数(,为常数,且,)的图像上.15.对于数列,若存在,使得,则删去,依此操作,直到所得到的数列没有相同项,将最后得到的数列称为原数列的“基数列”.若,则数列的“基数列”的项数为__________________.16.平面四边形如图所示,其中为锐角三角形,,,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=2sinxcosx﹣2sin2x,其中x∈R,(1)求函数f(x)的值域及最小正周期;(2)如图,在四边形ABCD中,AD=3,BD,f(A)=0,BC⊥BD,BC=5,求△ABC的面积S△ABC.18.已知函数,它的部分图象如图所示.(1)求函数的解析式;(2)当时,求函数的值域.19.已知方程;(1)若,求的值;(2)若方程有实数解,求实数的取值范围;(3)若方程在区间上有两个相异的解、,求的最大值.20.已知分别是内角的对边,.(1)若,求(2)若,且求的面积.21.已知扇形的面积为,弧长为,设其圆心角为(1)求的弧度;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】作出不等式区域如图所示:求目标函数的最小值等价于求直线的最小纵截距.平移直线经过点A(-2,0)时最小为-2.故选C.2、D【解题分析】如图所示,连接AC、BD相交于点O,连接EM,EN.(1)由正四棱锥S−ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故C正确.(2)由异面直线的定义可知:EP与SD是异面直线,故A正确;(3)由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此B正确.(4)当P与M重合时,有∥,其他情况都是异面直线即D不正确.故选D点睛:本题抓住正四棱锥的特征,顶点在底面的投影为底面正方形的中心,即SO⊥底面ABCD,EP为动直线,所以要证EP∥面,可先证EP所在的平面平行于面SBD,要证⊥可先证AC垂直于EP所在的平面,所以化动为静的处理思想在立体中常用.3、D【解题分析】
据投篮成绩的条形统计图,结合中位数的定义,对选项中的命题分析、判断即可.【题目详解】根据投篮成绩的条形统计图,3球以下(含3球)的人数为,6球以下(含6球)的人数为,结合中位数是5知4球以下(含4球)的人数为不多于17,而由条形统计图得4球以下(含4球)的人数不少于,因此4球以下(含4球)的人数为17所以5球的人数和6球的人数一共是17,显然5球的人数和6球的人数不一样多,故选D.【题目点拨】本题考查命题真假的判断,考查条形统计图、中位数的性质等基础知识,考查运算求解能力,是基础题.4、C【解题分析】
通过识别图像,先求,再求周期,将代入求即可【题目详解】由图可知:,,将代入得,又,,故故选C【题目点拨】本题考查通过三角函数识图求解解析式,属于基础题5、A【解题分析】
由圆的定义及平面向量数量积的性质及其运算可得:点P在以O为圆心,r为半径的圆上运动且点P在以Q为圆心,半径为1和2的圆环区域运动,由图可得解.【题目详解】建立如图所示的平面直角坐标系,则,,由,则,即点P在以O为圆心,r为半径的圆上运动,又,则点P在以Q为圆心,半径为1和2的圆环区域运动,由图可知:当C∩Ω是两段分离的曲线时,r的取值范围为:3<r<5,故选:A.【题目点拨】本题考查平面向量数量积的性质及其运算,利用数形结合思想,将向量问题转化为圆与圆的位置关系问题,考查转化与化归思想,属于中等题.6、C【解题分析】
以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,利用向量法能求出异面直线BD与CE所成的角.【题目详解】∵平面ABCD⊥平面EDCF,且四边形ABCD和四边形EDCF都是正方形,∴以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,设AB=1,则B(1,1,0),D(0,0,0),C(0,1,0),E(0,0,1),(﹣1,﹣1,0),(0,﹣1,1),设异面直线BD与CE所成的角为θ,则cosθ,∴θ.∴异面直线BD与CE所成的角为.故选:C.【点评】本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.7、A【解题分析】
甲不输的概率等于甲获胜或者平局的概率相加,计算得到答案.【题目详解】甲不输的概率等于甲获胜或者平局的概率相加甲、乙下成平局的概率为:故答案选A【题目点拨】本题考查了互斥事件的概率,意在考查学生对于概率的理解.8、C【解题分析】
试题分析:由正弦定理可知,∴,∴.考点:正弦定理的运用.9、D【解题分析】
由,根据不等式乘方性质可判断A不成立;由指数函数单调性可判断B不成立;由基本不等式可判断C不成立,D成立.【题目详解】对于A,若,则有,故A不成立;对于B,根据指数函数单调性,函数单调递减,,故B不成立;对于C,由基本不等式,a=b取得最小值,由不能取得最小值,故C不成立;则D能成立.故选:D.【题目点拨】本题考查基本不等式、不等式的基本性质,考查不等式性质的应用,属于基础题.10、D【解题分析】
把不等式,化简为不等式,即可求解,得到答案.【题目详解】由题意,不等式,可化为,即,解得或,所以不等式的解集为.故选:D.【题目点拨】本题主要考查了分式不等式的求解,其中解答中熟记分式不等式的解法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2×【解题分析】
判断数列是等比数列,然后求出通项公式.【题目详解】数列{an}中,a可得数列是等比数列,等比为3,an故答案为:2×3【题目点拨】本题考查等比数列的判断以及通项公式的求法,考查计算能力.12、3【解题分析】
直接根据任意角三角函数的定义求解,再利用两角和的正切展开代入求解即可【题目详解】由任意角三角函数的定义可得:.则故答案为3【题目点拨】本题主要考查了任意角三角函数的定义和两角和的正切计算,熟记公式准确计算是关键,属于基础题.13、2【解题分析】
在正数数列an中,由点an,an-1在直线x-2y=0上,知a【题目详解】由题意,在正数数列an中,a1=1,且a可得an-2即an因为a1=1,所以数列所以Sn故答案为2n【题目点拨】本题主要考查了等比数列的定义,以及等比数列的前n项和公式的应用,同时涉及到数列与解析几何的综合运用,是一道好题.解题时要认真审题,仔细解答,注意等比数列的前n项和公式和通项公式的灵活运用,着重考查了推理与运算能力,属于中档试题.14、(3)【解题分析】
根据递增数列的概念,以及等比数列的通项公式,充分条件与必要条件的概念,可判断(1);令,为偶数,可判断(2);根据等比数列的性质,直接计算,可判断(3);令,结合题意,可判断(4),进而可得出结果.【题目详解】(1)若等比数列单调递增,则,所以或,故且不是等比数列单调递增的充要条件;(1)错;(2)若,为偶数,则,,因等比数列中的项不为,故此时数列,,,……,不成等比数列;(2)错;(3),所以(3)正确;(4)若,则,若点在函数的图像上,则,因,,故不能对任意恒成立;故(4)错.故答案为:(3)【题目点拨】本题主要考命题真假的判定,熟记等比数列的性质,以及等比数列的通项公式与求和公式即可,属于常考题型.15、10【解题分析】
由题意可得,只需计算所有可能取值的个数即可.【题目详解】因为求的可能取值个数,由周期性,故只需考虑的情况即可.此时.一共19个取值,故只需分析,又由,故,,即不同的取值个数一共为个.即“基数列”分别为和共10项.故答案为10【题目点拨】本题主要考查余弦函数的周期性.注意到随着的增大的值周期变化,故只需考虑一个周期内的情况.16、.【解题分析】
由二倍角公式求出,然后用余弦定理求得,再由余弦定理求.【题目详解】由题意,在中,,在中,,即,解得,或.若,则,,不合题意,舍去,所以.故答案为:.【题目点拨】本题考查余弦的二倍角公式,考查余弦定理.掌握余弦定理是解题关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)值域为[﹣3,1],最小正周期为π;(2).【解题分析】
(1)化简f(x)=2sinxcosx﹣2sin2xsin2x﹣22sin(2x)﹣1,即可.(2)求得AAB,cos,可得△ABC的面积S△ABC.【题目详解】(1)f(x)=2sinxcosx﹣2sin2xsin2x﹣22sin(2x)﹣1,函数f(x)的值域为[﹣3,1]最小正周期为π;(2)∵f(A)=0,即sin(2A),∴A.在△ADB中,BD2=AD2+AB2﹣2AD•ABcosA⇒,解得ABcos,则sin∠ABC=cos.△ABC的面积S△ABC.【题目点拨】本题考查了三角恒等变形、三角形面积计算,考查余弦定理,意在考查计算能力,属于中档题.18、(1);(2).【解题分析】试题分析:(1)依题意,则,将点的坐标代入函数的解析式可得,故,函数解析式为.(2)由题意可得,结合三角函数的性质可得函数的值域为.试题解析:(1)依题意,,故.将点的坐标代入函数的解析式可得,则,,故,故函数解析式为.(2)当时,,则,,所以函数的值域为.点睛:求函数f(x)=Asin(ωx+φ)在区间[a,b]上值域的一般步骤:第一步:三角函数式的化简,一般化成形如y=Asin(ωx+φ)+k的形式或y=Acos(ωx+φ)+k的形式.第二步:由x的取值范围确定ωx+φ的取值范围,再确定sin(ωx+φ)(或cos(ωx+φ))的取值范围.第三步:求出所求函数的值域(或最值).19、(1)或;(2);(3);【解题分析】试题分析:(1)时,由已知得到;(2)方程有实数解即a在的值域上,(3)根据二次函数的性质列不等式组得出tana的范围,利用根与系数的关系得出α+β的最值.试题解析:(1),或;(2)(3)因为方程在区间上有两个相异的解、,所以20、(1);(2)1【解题分析】试题分析:(1)由,结合正弦定理可得:,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版承包工地食堂餐厨垃圾处理合同模板3篇
- 2024蔬菜加工产品销售合作协议3篇
- 2024年股权转让合同标的及属性详细描述
- 2024年版物业托管服务协议版B版
- 二零二五版离婚协议书起草与审核合同2篇
- 2024版房屋赠与合同协议书大全
- 天津中德应用技术大学《教育技术与传播》2023-2024学年第一学期期末试卷
- 二零二五版家政服务+家庭健康促进合同3篇
- 太原幼儿师范高等专科学校《西医外科学医学免疫学与病原生物学》2023-2024学年第一学期期末试卷
- 二零二五年特殊用途变压器安装与性能测试合同2篇
- 2024年国家级森林公园资源承包经营合同范本3篇
- 对口升学《计算机应用基础》复习资料总汇(含答案)
- 《浸没式液冷冷却液选型要求》
- 迪士尼乐园总体规划
- 2024年江苏省苏州市中考数学试卷含答案
- 2024年世界职业院校技能大赛高职组“市政管线(道)数字化施工组”赛项考试题库
- 介绍蝴蝶兰课件
- 大学计算机基础(第2版) 课件 第1章 计算机概述
- 数字化年终述职报告
- 2024年职工普法教育宣讲培训课件
- 安保服务评分标准
评论
0/150
提交评论