2024年江苏省苏州市中考数学试卷含答案_第1页
2024年江苏省苏州市中考数学试卷含答案_第2页
2024年江苏省苏州市中考数学试卷含答案_第3页
2024年江苏省苏州市中考数学试卷含答案_第4页
2024年江苏省苏州市中考数学试卷含答案_第5页
已阅读5页,还剩59页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年江苏省苏州市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.1.(3分)用数轴上的点表示下列各数,其中与原点距离最近的是()A.﹣3 B.1 C.2 D.32.(3分)下列图案中,是轴对称图形的是()A. B. C. D.3.(3分)苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.2.47×1010 B.247×1010 C.2.47×1012 D.247×10124.(3分)若a>b﹣1,则下列结论一定正确的是()A.a+1<b B.a﹣1<b C.a>b D.a+1>b5.(3分)如图,AB∥CD,若∠1=65°,∠2=120°,则∠3的度数为()A.45 B.55° C.60° D.65°6.(3分)某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A.甲、丁 B.乙、戊 C.丙、丁 D.丙、戊7.(3分)如图,点A为反比例函数y(x<0)图象上的一点,连接AO,过点O作OA的垂线与反比例函数y(x>0)的图象交于点B,则的值为()A. B. C. D.8.(3分)如图,矩形ABCD中,AB,BC=1,动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿AB,CD向终点B,D运动,过点E,F作直线l,过点A作直线l的垂线,垂足为G,则AG的最大值为()A. B. C.2 D.1二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.9.(3分)计算:x3•x2=.10.(3分)若a=b+2,则(b﹣a)2=.11.(3分)如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是.12.(3分)如图,△ABC是⊙O的内接三角形,若∠OBC=28°,则∠A=°.13.(3分)直线l1:y=x﹣1与x轴交于点A,将直线l1绕点A逆时针旋转15°,得到直线l2,则直线l2对应的函数表达式是.14.(3分)铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O,所在圆的圆心C恰好是△ABO的内心,若AB=2,则花窗的周长(图中实线部分的长度)=.(结果保留π)15.(3分)二次函数y=ax2+bx+c(a≠0)的图象过点A(0,m),B(1,﹣m),C(2,n),D(3,﹣m),其中m,n为常数,则的值为.16.(3分)如图,△ABC中,∠ACB=90°,CB=5,CA=10,点D,E分别在AC,AB边上,AEAD,连接DE,将△ADE沿DE翻折,得到△FDE,连接CE,CF.若△CEF的面积是△BEC面积的2倍,则AD=.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.17.(5分)计算:|﹣4|+(﹣2)0.18.(5分)解方程组:.19.(6分)先化简,再求值:(1),其中x=﹣3.20.(6分)如图,△ABC中,AB=AC,分别以B,C为圆心,大于BC长为半径画弧,两弧交于点D,连接BD,CD,AD,AD与BC交于点E.(1)求证:△ABD≌△ACD;(2)若BD=2,∠BDC=120°,求BC的长.21.(6分)一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)22.(8分)某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B(乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年身全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.23.(8分)图①是某种可调节支撑架,BC为水平固定杆,竖直固定杆AB⊥BC,活动杆AD可绕点A旋转,CD为液压可伸缩支撑杆,已知AB=10cm,BC=20cm,AD=50cm.(1)如图②,当活动杆AD处于水平状态时,求可伸缩支撑杆CD的长度(结果保留根号);(2)如图③,当活动杆AD绕点A由水平状态按逆时针方向旋转角度α,且tanα(α为锐角),求此时可伸缩支撑杆CD的长度(结果保留根号).24.(8分)如图,△ABC中,AC=BC,∠ACB=90°,A(﹣2,0),C(6,0),反比例函数y(k≠0,x>0)的图象与AB交于点D(m,4),与BC交于点E.(1)求m,k的值;(2)点P为反比例函数y(k≠0,x>0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM∥AB,交y轴于点M,过点P作PN∥x轴,交BC于点N,连接MN,求△PMN面积的最大值,并求出此时点P的坐标.25.(10分)如图,△ABC中,AB=4,D为AB中点,∠BAC=∠BCD,cos∠ADC,⊙O是△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.26.(10分)某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D1001次列车从A站始发,经停B站后到达C站,G1002次列车从A站始发,直达C站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表车次A站B站C站发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了分钟,从B站到C站行驶了分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2.①.②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t=75),已知v1=240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25≤t≤150),若|d1﹣d2|=60,求t的值.27.(10分)如图①,二次函数y=x2+bx+c的图象C1与开口向下的二次函数图象C2均过点A(﹣1,0),B(3,0).(1)求图象C1对应的函数表达式;(2)若图象C2过点C(0,6),点P位于第一象限,且在图象C2上,直线l过点P且与x轴平行,与图象C2的另一个交点为Q(Q在P左侧),直线l与图象C1的交点为M,N(N在M左侧).当PQ=MP+QN时,求点P的坐标;(3)如图②,D,E分别为二次函数图象C1,C2的顶点,连接AD,过点A作AF⊥AD,交图象C2于点F,连接EF,当EF∥AD时,求图象C2对应的函数表达式.

2024年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.1.(3分)用数轴上的点表示下列各数,其中与原点距离最近的是()A.﹣3 B.1 C.2 D.3【解答】解:∵|﹣3|=3,|1|=1,|2|=2,|3|=3,而3<2<1,∴1与原点距离最近,故选:B.2.(3分)下列图案中,是轴对称图形的是()A. B. C. D.【解答】解:B,C,D选项中的图形不都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A选项中的图形能找到这样的两条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A.3.(3分)苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.2.47×1010 B.247×1010 C.2.47×1012 D.247×1012【解答】解:2470000000000=2.47×1012,故选:C.4.(3分)若a>b﹣1,则下列结论一定正确的是()A.a+1<b B.a﹣1<b C.a>b D.a+1>b【解答】解:若a>b﹣1,不等式两边加1可得a+1>b,故A不合题意,D符合题意,根据a>b﹣1,得不到a﹣1<b,a>b,故B、C不符合题意.故选:D.5.(3分)如图,AB∥CD,若∠1=65°,∠2=120°,则∠3的度数为()A.45 B.55° C.60° D.65°【解答】解:∵AB∥CD,∠1=65°,∴∠ACD=∠1=65°,∵∠2=∠ACD+∠3,∠2=120°,∴∠3=55°,故选:B.6.(3分)某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A.甲、丁 B.乙、戊 C.丙、丁 D.丙、戊【解答】解:∵要推出由7个盲盒组成的套装产品,∴中位数应该是质量由小到大排列的第4个盲盒,∵序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,∴选定的6号盲盒和7号盲盒的质量应该一个超过100,另一个低于100,∴选定的可以是:甲,戊;或乙,丁;或丙,丁,∵选项中只有:丙,丁,故选:C.7.(3分)如图,点A为反比例函数y(x<0)图象上的一点,连接AO,过点O作OA的垂线与反比例函数y(x>0)的图象交于点B,则的值为()A. B. C. D.【解答】解:作AG⊥x轴,垂足为G,BH⊥x轴,垂足为H,∵点A在函数y图象上,点B在反比例函数y图象上,∴S△AGO,S△BOH=2,∵∠AOB=90°,∴∠AOG=∠HBO,∠AGO=∠OHB,∴△AGO∽△OHB,∴,∴.故选:A.8.(3分)如图,矩形ABCD中,AB,BC=1,动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿AB,CD向终点B,D运动,过点E,F作直线l,过点A作直线l的垂线,垂足为G,则AG的最大值为()A. B. C.2 D.1【解答】解:连接AC,交EF于O,∵四边形ABCD是矩形,∴AB∥CD,∠B=90°,∵AB,BC=1,∴AC2,∵动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿AB,CD向终点B,D运动,∴CF=AE,∵AB∥CD,∴∠ACD=∠CAB,又∵∠COF=∠AOE,∴△COF≌△AOE(AAS),∴AO=CO=1,∵AG⊥EF,∴点G在以AO为直径的圆上运动,∴AG为直径时,AG有最大值为1,故选:D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.9.(3分)计算:x3•x2=x5.【解答】解:x3•x2=x5,故答案为:x5.10.(3分)若a=b+2,则(b﹣a)2=4.【解答】解:∵a=b+2,∴b﹣a=﹣2,∴(b﹣a)2=(﹣2)2=4,故答案为:4.11.(3分)如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是.【解答】解:根据题意可知,正八边形转盘被分成八个面积相等的三角形,其中阴影部分的面积为3个面积相等的三角形,∴指针落在阴影部分的概率等于阴影部分的面积除以正八边形的面积,即,故答案为:.12.(3分)如图,△ABC是⊙O的内接三角形,若∠OBC=28°,则∠A=62°.【解答】解:连接OC,∵OB=OC,∠OBC=28°,∴∠OCB=∠OBC=28°,∴∠BOC=180°﹣∠OCB=∠OBC=124°,∴,故答案为:62.13.(3分)直线l1:y=x﹣1与x轴交于点A,将直线l1绕点A逆时针旋转15°,得到直线l2,则直线l2对应的函数表达式是y.【解答】解:如图所示,将x=0代入y=x﹣1得,y=﹣1,所以点B坐标为(0,﹣1).将y=0代入y=x﹣1得,x=1,所以点A的坐标为(1,0),所以OA=OB=1,所以∠OBA=∠OAB=45°.由旋转可知,∠BAC=15°,∴∠OAC=45°+15°=60°.在Rt△AOC中,tan∠OAC,所以OC,则点C的坐标为(0,).令直线l2的函数表达式为y=kx+b,则,解得,所以直线l2的函数表达式为y.故答案为:y.14.(3分)铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O,所在圆的圆心C恰好是△ABO的内心,若AB=2,则花窗的周长(图中实线部分的长度)=8π.(结果保留π)【解答】解:如图,过点C作CM⊥AB于点M,则AM=BMAB,∵六条等弧所对应的弦构成一个正六边形,中心为点O,∴∠AOB60°,∵OA=OB,∴△AOB是正三角形,∵点O是△AOB的内心,∴∠CAB=∠CBA60°=30°,∠ACB=2∠AOB=120°,在Rt△ACM中,AM,∠CAM=30°,∴AC2,∴的长为π,∴花窗的周长为π×6=8π.故答案为:8π.15.(3分)二次函数y=ax2+bx+c(a≠0)的图象过点A(0,m),B(1,﹣m),C(2,n),D(3,﹣m),其中m,n为常数,则的值为.【解答】解:将A(0,m),B(1,﹣m),D(3,﹣m)代入y=ax2+bx+c(a≠0),得:,∴∴,把C(2,n)代入,得:,∴,∴,故答案为:.16.(3分)如图,△ABC中,∠ACB=90°,CB=5,CA=10,点D,E分别在AC,AB边上,AEAD,连接DE,将△ADE沿DE翻折,得到△FDE,连接CE,CF.若△CEF的面积是△BEC面积的2倍,则AD=.【解答】解:∵,∴设AD=x,,∵△ADE沿DE翻折,得到△FDE,∴DF=AD=x,∠ADE=∠FDE,过E作EH⊥AC于H,设EF与AC相交于M,则∠AHE=∠ACB=90°,又∵∠A=∠A,∴△AHE∽△ACB,∴,∵CB=5,CA=10,,∴,∴EH=x,,则DH=AH﹣AD=x=EH,∴Rt△EHD是等腰直角三角形,∴∠HDE=∠HED=45°,则∠ADE=∠EDF=135°,∴∠FDM=135°﹣45°=90°,在△FDM和△EHM中,,∴△FDM≌△EHM(AAS),∴,,∴,S25﹣5x,∵△CEF的面积是△BEC的面积的2倍,∴,则3x2﹣40x+100=0,解得,x2=10(舍去),则,故答案为:.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.17.(5分)计算:|﹣4|+(﹣2)0.【解答】解:|﹣4|+(﹣2)0=4+1﹣3=2.18.(5分)解方程组:.【解答】解:,①﹣②得:4y=4,即y=1,将y=1代入①得:x=3,则方程组的解为.19.(6分)先化简,再求值:(1),其中x=﹣3.【解答】解:(1)••,当x=﹣3时,原式.20.(6分)如图,△ABC中,AB=AC,分别以B,C为圆心,大于BC长为半径画弧,两弧交于点D,连接BD,CD,AD,AD与BC交于点E.(1)求证:△ABD≌△ACD;(2)若BD=2,∠BDC=120°,求BC的长.【解答】(1)证明:由作图知:BD=CD.在△ABD和△ACD中,,∴△ABD≌△ACD(SSS);(2)解:∵△ABD≌△ACD,∠BDC=120°,∴∠BDA=∠CDA∠BDC120°=60°,又∵BD=CD,∴DA⊥BC,BE=CE.∵BD=2,∴BE=BD•sin∠BDA=2,∴.21.(6分)一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)【解答】解:(1)∵一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,∴从盒子中任意抽取1张书签,恰好抽到“夏”的概率为,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中抽取的书签恰好1张为“春”,1张为“秋”的结果有2种,∴抽取的书签恰好1张为“春”,1张为“秋”的概率为.22.(8分)某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B(乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年身全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为72°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【解答】解:(1)此次调查的总人数为9÷15%=60(人),D项目的人数有60﹣6﹣18﹣9﹣12=15(人),补全条形统计图如下:(2)图②中项目E对应的圆心角的度数为360°72°;故答案为:72;(3)800240(名),答:估计本校七年级800名学生中选择项目B(乒乓球)的人数为240名.23.(8分)图①是某种可调节支撑架,BC为水平固定杆,竖直固定杆AB⊥BC,活动杆AD可绕点A旋转,CD为液压可伸缩支撑杆,已知AB=10cm,BC=20cm,AD=50cm.(1)如图②,当活动杆AD处于水平状态时,求可伸缩支撑杆CD的长度(结果保留根号);(2)如图③,当活动杆AD绕点A由水平状态按逆时针方向旋转角度α,且tanα(α为锐角),求此时可伸缩支撑杆CD的长度(结果保留根号).【解答】解:(1)过点C作CE⊥AD,垂足为E,由题意得:AB=CE=10cm,BC=AE=20cm,∵AD=50cm,∴ED=AD﹣AE=50﹣20=30(cm),在Rt△CED中,CD10(cm),∴可伸缩支撑杆CD的长度为10cm;(2)过点D作DF⊥BC,交BC的延长线于点F,交AD′于点G,由题意得:AB=FG=10cm,AG=BF,∠AGD=90°,在Rt△ADG中,tanα,∴设DG=3xcm,则AG=4xcm,∴AD5x(cm),∵AD=50cm,∴5x=50,解得:x=10,∴AG=40cm,DG=30cm,∴DF=DG+FG=30+10=40(cm),∴BF=AG=40cm,∵BC=20cm,∴CF=BF﹣BC=40﹣20=20(cm),在Rt△CFD中,CD20(cm),∴此时可伸缩支撑杆CD的长度为20cm.24.(8分)如图,△ABC中,AC=BC,∠ACB=90°,A(﹣2,0),C(6,0),反比例函数y(k≠0,x>0)的图象与AB交于点D(m,4),与BC交于点E.(1)求m,k的值;(2)点P为反比例函数y(k≠0,x>0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM∥AB,交y轴于点M,过点P作PN∥x轴,交BC于点N,连接MN,求△PMN面积的最大值,并求出此时点P的坐标.【解答】解:(1)∵A(﹣2,0),C(6,0),∴AC=8.又∵AC=BC,∴BC=8.∠ACB=90°,∴点B(6,8).设直线AB的函数表达式为y=ax+b,将A(﹣2,0),B(6,8)代入y=ax+b得:,解得,∴直线AB的函数表达式为y=x+2.∴将点D(m,4)代入y=x+2,得m=2.∴D(2,4),将D(2,4)代入反比例函数解析式y得:4,解得k=8.(2)延长NP交y轴于点Q,交AB于点L.∵AC=BC,∠BCA=90°,∴∠BAC=45°,∵PN∥x轴,∴∠BLN=∠BAC=45°,∠NQM=90°,∵AB∥MP,∴∠MPL=∠BLP=45°,∠QMP=∠QPM=45°,∴QM=QP,设点P的坐标为(t,),则PQ=t,PN=6﹣t,MQ=PQ=t,∴S△PMN,∴当t=3时,S△PMN有最大值,此时P(3,).25.(10分)如图,△ABC中,AB=4,D为AB中点,∠BAC=∠BCD,cos∠ADC,⊙O是△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.【解答】解:(1)∵∠BAC=∠BCD,∠B=∠B,∴△BAC∽△BCD,∴,∵,D为AB中点,∴,∴BC2=16,∴BC=4;(2)过点A作AE⊥CD于点E,连接CO,并延长交⊙O于F,连接AF,∵在Rt△AED中,,,∴DE=1,∴,∵△BAC∽△BCD,∴,设CD=x,则ACx,CE=x﹣1,∵在Rt△ACE中,AC2=CE2+AE2,∴,即x2+2x﹣8=0,解得x=2,x=﹣4(舍去),∴CD=2,AC,∵∠AFC与∠ADC都是所对的圆周角,∴∠AFC=∠ADC,∵CF为⊙O的直径,∴∠CAF=90°,∴,∴,即⊙O的半径为.26.(10分)某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D1001次列车从A站始发,经停B站后到达C站,G1002次列车从A站始发,直达C站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表车次A站B站C站发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了90分钟,从B站到C站行驶了60分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2.①.②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t=75),已知v1=240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25≤t≤150),若|d1﹣d2|=60,求t的值.【解答】解:(1)D1001次列车从A站到B站行驶了90分钟,从B站到C站行驶了60分钟,故答案为:90,60;(2)①根据题意得:D1001次列车从A站到C站共需90+60=150分钟,G1002次列车从A站到C站共需35+60+30=125分钟,∴150v1=125v2,∴,故答案为:;②∵v1=4(千米/分钟),,∴v2=4.8(千米/分钟),∵4×90=360(千米),∴A与B站之间的路程为360千米,∵360÷4.8=75(分钟),∴当t=100时,G1002次列车经过B站,由题意可知,当90≤t≤110时,D1001次列车在B站停车,∴G1002次列车经过B站时,D1001次列车正在B站停车,i.当25≤t<90时,d1>d2,∴|d1﹣d2|=d1﹣d2,∴4t﹣4.8(t﹣25)=60,t=75(分钟);ⅱ.当90≤t≤100时,d1≥d2,∴|d1﹣d2|=d1﹣d2,∴360﹣4.8(t﹣25)=60,t=87.5(分钟),不合题意,舍去;ⅱi.当100<t≤110时,d1<d2,∴|d1﹣d2|=d2﹣d1,∴4.8(t﹣25)﹣360=60,t=112.5(分钟),不合题意,舍去;iv.当110<t≤150时,d1<d2,∴|d1﹣d2|=d2﹣d1,∴4.8(t﹣25)﹣[360+4(t﹣110)]=60,t=125(分钟);综上所述,当t=75或125时,|d1﹣d2|=60.27.(10分)如图①,二次函数y=x2+bx+c的图象C1与开口向下的二次函数图象C2均过点A(﹣1,0),B(3,0).(1)求图象C1对应的函数表达式;(2)若图象C2过点C(0,6),点P位于第一象限,且在图象C2上,直线l过点P且与x轴平行,与图象C2的另一个交点为Q(Q在P左侧),直线l与图象C1的交点为M,N(N在M左侧).当PQ=MP+QN时,求点P的坐标;(3)如图②,D,E分别为二次函数图象C1,C2的顶点,连接AD,过点A作AF⊥AD,交图象C2于点F,连接EF,当EF∥AD时,求图象C2对应的函数表达式.【解答】解:(1)将A(1,0),B(3,0代入y=x2+bx+c得,解得,∴图象C1对应的函数表达式:y=x2﹣2x﹣3;(2)设C2对应的函数表达式为y=a(x+1)(x﹣3)(a<0),将点C(0,6)代入得,a=﹣2.∴C2对应的函数表达式为:y=﹣2(x+1)(x+3),其对称轴为直线x=1.又∵图象C1的对称轴也为直线x=1.作直线x=1,交直线l于点H(如答图①)由二次函数的对称性得,QH=PH,PM=NQ,又∵PQ=MP+QM,∴PH=PM.设PH=t(0<l<2),则点P的横坐标为t+1,点M的横坐标为2t+1,将x=t+1代入y=﹣2(x+1)(x﹣3),得yP=﹣2(t+2)(t﹣2),将x=2t+1代入y=(x+1)(x﹣3),得yM=(2t+2)(2t﹣2),∵yP=yM,∴﹣2(t+2)(t﹣2)=(2t+2)(2t﹣2),即6t2=12,解得,(舍去).∴点P的坐标为(1,4);(3)连接DE,交x轴于点G,过点F作FI⊥ED于点I,过点F作FJ⊥x轴于点J,(如答图②),∵FI⊥ED,FJ⊥x轴,∴四边形IGJF为矩形,∴IF=GJ,IG=FJ,设C2对应的函数表达式为y=a(x+1)(x﹣3)(a<0),∵点D,E分别为二次函数图象C1,C2的顶点,∴D(1,﹣4),E(1,﹣4a).∴DG=4,AG=2,EG=﹣4a,在Rt△AGD中,,∵AF⊥AD,∴∠FAB+∠DAB=90°,又∵∠DAG+∠ADG=90°,∴∠ADG=∠FAB,∴tmn∠FAB=tm∠ADG,设GJ=m(0<m<2),则AJ=2+m,∴FJ,F(m+1,),∵EF∥AD,∴∠FEl=∠ADG,∴tan∠FEl=tan∠ADG,∴EI=2m,∵EG=EI+IG,∴,∴①,∵点F在C2上,a(m+1+1)(m+1﹣3),即a(m+2)(m﹣2),∵m+2≠0,∴a(m﹣2)②,由①,②可得,解得m1=0(舍去),m2,∴a,∴图象C2对应的函数表达式为.2024年江苏省盐城市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2024的相反数是()A.2024 B.﹣2024 C. D.2.(3分)下列四幅图片中的主体事物,在现实运动中属于翻折的是()A.工作中的雨刮器 B.移动中的黑板 C.折叠中的纸片 D.骑行中的自行车3.(3分)下列运算正确的是()A.a6÷a2=a4 B.2a﹣a=2 C.a3•a2=a6 D.(a3)2=a54.(3分)盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为()A.0.24×107 B.24×105 C.2.4×107 D.2.4×1065.(3分)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿 B.地 C.之 D.都6.(3分)小明将一块直角三角板摆放在直尺上,如图,若∠1=55°,则∠2的度数为()A.25° B.35° C.45° D.55°7.(3分)矩形相邻两边长分别为cm、cm,设其面积为Scm2,则S在哪两个连续整数之间()A.1和2 B.2和3 C.3和4 D.4和58.(3分)甲、乙两家公司2019~2023年的利润统计图如下,比较这两家公司的利润增长情况()A.甲始终比乙快 B.甲先比乙慢,后比乙快 C.甲始终比乙慢 D.甲先比乙快,后比乙慢二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.(3分)若有意义,则x的取值范围是.10.(3分)分解因式:x2+2x+1=.11.(3分)两个相似多边形的相似比为1:2,则它们的周长的比为.12.(3分)如图,△ABC是⊙O的内接三角形,∠C=40°,连接OA、OB,则∠OAB=°.13.(3分)已知圆锥的底面半径为4,母线长为5,该圆锥的侧面积为.14.(3分)中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为尺.15.(3分)如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m的点P处,测得教学楼底端点A的俯角为37°,再将无人机沿教学楼方向水平飞行26.6m至点Q处,测得教学楼顶端点B的俯角为45°,则教学楼AB的高度约为m.(精确到1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)16.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,点D是AC的中点,连接BD,将△BCD绕点B旋转,得到△BEF.连接CF,当CF∥AB时,CF=.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:|﹣2|﹣(1+π)0+4sin30°.18.(6分)求不等式x﹣1的正整数解.19.(8分)先化简,再求值:1,其中a=4.20.(8分)在“重走建军路,致敬新四军”红色研学活动中,学校建议同学们利用周末时间自主到以下三个基地开展研学活动.A.新四军纪念馆(主馆区);B.新四军重建军部旧址(泰山庙);C.新四军重建军部纪念塔(大铜马).小明和小丽各自随机选择一个基地作为本次研学活动的第一站.(1)小明选择基地A的概率为;(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.21.(8分)已知:如图,点A、B、C、D在同一条直线上,AE∥BF,AE=BF.若,则AB=CD.请从①CE∥DF;②CE=DF;③∠E=∠F这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.22.(10分)小明在草稿纸上画了某反比例函数在第二象限内的图象,并把矩形直尺放在上面,如图.请根据图中信息,求:(1)反比例函数表达式;(2)点C坐标.23.(10分)如图,点C在以AB为直径的⊙O上,过点C作⊙O的切线l,过点A作AD⊥l,垂足为D,连接AC、BC.(1)求证:△ABC∽△ACD;(2)若AC=5,CD=4,求⊙O的半径.24.(10分)阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为th,调查问卷设置了四个时间选项:A.t<1;B.1≤t<1.5;C.1.5≤t<2;D.t≥2),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图.请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为,该地区七年级学生“每天阅读时间不少于1小时”的人数约为人;(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.25.(10分)如图1,E、F、G、H分别是▱ABCD各边的中点,连接AF、CE交于点M,连接AG、CH交于点N,将四边形AMCN称为▱ABCD的“中顶点四边形”.(1)求证:中顶点四边形AMCN为平行四边形;(2)①如图2,连接AC、BD交于点O,可得M、N两点都在BD上,当▱ABCD满足时,中顶点四边形AMCN是菱形;②如图3,已知矩形AMCN为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)26.(12分)请根据以下素材,完成探究任务.制定加工法案生产背景背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y224雅x1正148探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.27.(14分)发现问题小明买菠萝时发现,通常情况下,销售员都是先削去菠萝的皮,再斜着铲去菠萝的籽.提出问题销售员斜着铲去菠萝的籽,除了方便操作,是否还蕴含着什么数学道理呢?分析问题某菠萝可以近似看成圆柱体,若忽略籽的体积和铲去果肉的厚度与宽度,那么籽在侧面展开图上可以看成点,每个点表示不同的籽.该菠萝的籽在侧面展开图上呈交错规律排列,每行有n个籽,每列有k个籽,行上相邻两籽、列上相邻两籽的间距都为d(n,k线均为正整数,n>k≥3,d>0),如图1所示.小明设计了如下三种铲籽方案.方案1:图2是横向铲籽示意图,每行铲的路径长为,共铲行,则铲除全部籽的路径总长为;方案2:图3是纵向铲籽示意图,则铲除全部籽的路径总长为;方案3:图4是销售员斜着铲籽示意图,写出该方案铲除全部籽的路径总长.解决问题在三个方案中,哪种方案铲籽路径总长最短?请写出比较过程,并对销售员的操作方法进行评价.

2024年江苏省盐城市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2024的相反数是()A.2024 B.﹣2024 C. D.【答案】B【解答】解:2024的相反数是﹣2024,故选:B.2.(3分)下列四幅图片中的主体事物,在现实运动中属于翻折的是()A.工作中的雨刮器 B.移动中的黑板 C.折叠中的纸片 D.骑行中的自行车【答案】C【解答】解:因为工作中的雨刮器的运动方式属于旋转,所以A选项不符合题意.因为移动中的黑板的运动方式属于平移,所以B选项不符合题意.因为折叠中的纸片的运动方式属于翻折,所以C选项符合题意.因为骑行中的自行车的运动方式属于平移,所以D选项不符合题意.故选:C.3.(3分)下列运算正确的是()A.a6÷a2=a4 B.2a﹣a=2 C.a3•a2=a6 D.(a3)2=a5【答案】A【解答】解:a6÷a2=a4,则A符合题意;2a﹣a=a,则B不符合题意;a3•a2=a5,则C不符合题意;(a3)2=a6,则D不符合题意;故选:A.4.(3分)盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为()A.0.24×107 B.24×105 C.2.4×107 D.2.4×106【答案】D【解答】解:2400000=2.4×106,故选:D.5.(3分)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿 B.地 C.之 D.都【答案】C【解答】解:正方体的表面展开图相对的面之间一定相隔一个正方形,“地”与“都”是相对面,“之”与“盐”是相对面,“湿”与“城”是相对面,故选:C.6.(3分)小明将一块直角三角板摆放在直尺上,如图,若∠1=55°,则∠2的度数为()A.25° B.35° C.45° D.55°【答案】B【解答】解:如图:∵直尺的两边平行,∠1=55°,∴∠ABC=∠1=55°,∵∠BAC=90°,∴∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣90°﹣55°=35°,∴∠2=∠ACB=35°.故选:B.7.(3分)矩形相邻两边长分别为cm、cm,设其面积为Scm2,则S在哪两个连续整数之间()A.1和2 B.2和3 C.3和4 D.4和5【答案】C【解答】解:S(cm2),∵,∴34,∴S在3和4之间.故选:C.8.(3分)甲、乙两家公司2019~2023年的利润统计图如下,比较这两家公司的利润增长情况()A.甲始终比乙快 B.甲先比乙慢,后比乙快 C.甲始终比乙慢 D.甲先比乙快,后比乙慢【答案】A【解答】解:甲家公司的利润增长较快,理由是:甲公司从2019﹣2023年,利润增长了210﹣100=110(万元),增长率为100%=110%,乙公司从2019﹣2023年利润增长了160﹣120=40(万元),增长率为,100%≈33.3%,因此甲公司利润始终比乙增长快.故选:A.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.(3分)若有意义,则x的取值范围是x≠1.【答案】x≠1.【解答】解:若有意义,则x的取值范围是x≠1.故答案为:x≠1.10.(3分)分解因式:x2+2x+1=(x+1)2.【答案】见试题解答内容【解答】解:x2+2x+1=(x+1)2.故答案为:(x+1)2.11.(3分)两个相似多边形的相似比为1:2,则它们的周长的比为1:2.【答案】1:2.【解答】解:∵两个相似多边形的相似比为1:2,∴两个相似多边形周长的比等于1:2,故答案为:1:2.12.(3分)如图,△ABC是⊙O的内接三角形,∠C=40°,连接OA、OB,则∠OAB=50°.【答案】50.【解答】解:∵∠C=40°,∴∠AOB=80°,∵OA=OB,∴∠OAB=∠OBA,∵∠OAB+∠OBA+∠AOB=180°,∴∠OAB=50°,故答案为:50.13.(3分)已知圆锥的底面半径为4,母线长为5,该圆锥的侧面积为20π.【答案】20π.【解答】解:由圆锥的底面半径为4,母线长为5,则圆锥的侧面积为2π×4×5=20π.故答案为:20π.14.(3分)中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为15尺.【答案】15.【解答】解:设该问题中的竿子长为x尺,则绳索长为(x+5)尺,根据题意得:x(x+5)=5,解得:x=15,∴该问题中的竿子长为15尺.故答案为:15.15.(3分)如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m的点P处,测得教学楼底端点A的俯角为37°,再将无人机沿教学楼方向水平飞行26.6m至点Q处,测得教学楼顶端点B的俯角为45°,则教学楼AB的高度约为17m.(精确到1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】17.【解答】解:如图,令AB的延长线于PQ的延长线交于点C,由题意,知AC=30m,PQ=26.6m,∠APC=37°,∠BQC=45°,在Rt△APC中,PC40(m),∴QC=PC﹣PQ=40﹣26.6=13.4(m),在Rt△BQC中,BC=QC=13.4m,∴AB=AC﹣BC=30﹣13.4=16.6≈17(m),故答案为:17.16.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,点D是AC的中点,连接BD,将△BCD绕点B旋转,得到△BEF.连接CF,当CF∥AB时,CF=2.【答案】2.【解答】解:作BG⊥CF于点G,如图所示,∵∠ACB=90°,AC=BC=2,点D是AC的中点,∴CD,∠ABC=45°,∴BD,由旋转的性质可知:△DCB≌△FEB,∴BD=BF,∵CF∥AB,∴∠ABC=∠BCG=45°,∴CG=BC•sin∠BCG=22,∴BG2,∴GF,∴CF=CG+GF=2,故答案为:2.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:|﹣2|﹣(1+π)0+4sin30°.【答案】3.【解答】解:原式=2﹣1+4=2﹣1+2=3.18.(6分)求不等式x﹣1的正整数解.【答案】1,2.【解答】解:,1+x≥3x﹣3,x﹣3x≥﹣3﹣1,﹣2x≥﹣4,x≤2.所以此不等式的正整数解为:1,2.19.(8分)先化简,再求值:1,其中a=4.【答案】,.【解答】解:原式=1•=1,当a=4时,原式.20.(8分)在“重走建军路,致敬新四军”红色研学活动中,学校建议同学们利用周末时间自主到以下三个基地开展研学活动.A.新四军纪念馆(主馆区);B.新四军重建军部旧址(泰山庙);C.新四军重建军部纪念塔(大铜马).小明和小丽各自随机选择一个基地作为本次研学活动的第一站.(1)小明选择基地A的概率为;(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.【答案】(1);(2).【解答】解:(1)∵共有三个基地开展研学活动,∴小明选择基地A的概率为;故答案为:;(2)画树状图如下:由上可得,一共有9种等可能性,其中小明和小丽选择相同基地的可能性有3种,∴小明和小丽选择相同基地的概率为.21.(8分)已知:如图,点A、B、C、D在同一条直线上,AE∥BF,AE=BF.若③,则AB=CD.请从①CE∥DF;②CE=DF;③∠E=∠F这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.【答案】证明见解析.【解答】证明:选择①,∵AE∥BF,∴∠A=∠FBD,∵CE∥DF,∴∠ACE=∠D,在△AEC和△BFD中,,∴△AEC≌△BFD(AAS),∴AC=BD,∴AB=CD;选择③,∵AE∥BF,∴∠A=∠FBD,在△AEC和△BFD中,,∴△AEC≌△BFD(ASA),∴AC=BD,∴AB=CD.22.(10分)小明在草稿纸上画了某反比例函数在第二象限内的图象,并把矩形直尺放在上面,如图.请根据图中信息,求:(1)反比例函数表达式;(2)点C坐标.23.(10分)如图,点C在以AB为直径的⊙O上,过点C作⊙O的切线l,过点A作AD⊥l,垂足为D,连接AC、BC.(1)求证:△ABC∽△ACD;(2)若AC=5,CD=4,求⊙O的半径.【答案】(1)见解析;(2).【解答】(1)证明:连接OC,∵l是⊙O的切线,∴OC⊥l,∵AD⊥l,∴OC∥AD,∴∠CAD=∠ACO=∠CAB,∵∠D=∠ACB=90°,∴△ABC∽△ACD;(2)解:∵AC=5,CD=4,∠D=90°,∴AD3,∵△ABC∽△ACD,∴,∴,∴AB,∴半径为.24.(10分)阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为th,调查问卷设置了四个时间选项:A.t<1;B.1≤t<1.5;C.1.5≤t<2;D.t≥2),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图.请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为800,该地区七年级学生“每天阅读时间不少于1小时”的人数约为7200人;(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.【答案】(1)800,7200;(2)5.56%;(3)见解答,答案不唯一.【解答】解:(1)2023年9月份抽样调查的样本容量为:80+320+280+120=800;该地区七年级学生“每天阅读时间不少于1小时”的人数约为:80007200(人),故答案为:800,7200;(2)12月份“每天阅读时间不少于1小时”的占比为(1﹣5%)=95%,9月份“每天阅读时间不少于1小时”的占比为100%=90%,[(1﹣5%)100%]÷(100%)≈5.56%,故该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率为5.56%;(3)该地区出台相关激励措施的做法收到了良好的效果,“每天阅读时间少于1小时”的比例由9月份的10%减少到12份的5%,“每天阅读时间大约于1.5小时”的比例也有大幅度上升.25.(10分)如图1,E、F、G、H分别是▱ABCD各边的中点,连接AF、CE交于点M,连接AG、CH交于点N,将四边形AMCN称为▱ABCD的“中顶点四边形”.(1)求证:中顶点四边形AMCN为平行四边形;(2)①如图2,连接AC、BD交于点O,可得M、N两点都在BD上,当▱ABCD满足AC⊥BD时,中顶点四边形AMCN是菱形;②如图3,已知矩形AMCN为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)【答案】(1)见解析;(2)①AC⊥BD;②见解析.【解答】(1)证明:∵▱ABCD,∴AB∥CD,AD∥BC,AB=CD,AD=BC,∵点E、F、G、H分别是▱ABCD各边的中点,∴,AE∥CG,∴四边形AECG为平行四边形,同理可得:四边形AFCH为平行四边形,∴AM∥CN,AN∥CM,∴四边形AMCN是平行四边形;(2)解:①当平行四边形ABCD满足

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论