山西省太原市山西大学附中2024届数学高一第二学期期末学业质量监测模拟试题含解析_第1页
山西省太原市山西大学附中2024届数学高一第二学期期末学业质量监测模拟试题含解析_第2页
山西省太原市山西大学附中2024届数学高一第二学期期末学业质量监测模拟试题含解析_第3页
山西省太原市山西大学附中2024届数学高一第二学期期末学业质量监测模拟试题含解析_第4页
山西省太原市山西大学附中2024届数学高一第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省太原市山西大学附中2024届数学高一第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.关于x的不等式的解集中,恰有3个整数,则a的取值范围是()A. B. C. D.(4,5)2.在数列{an}中,an=31﹣3n,设bn=anan+1an+2(n∈N*).Tn是数列{bn}的前n项和,当Tn取得最大值时n的值为()A.11 B.10 C.9 D.83.下列函数中,在区间上单调递增的是()A. B. C. D.4.已知等比数列的前n项和为,若,,则()A. B. C.1 D.25.已知直线是平面的斜线,则内不存在与(

)A.相交的直线 B.平行的直线C.异面的直线 D.垂直的直线6.如图,在中,,,若,则()A. B. C. D.7.已知数列满足递推关系,则()A. B. C. D.8.用数学归纳法时,从“k到”左边需增乘的代数式是()A. B.C. D.9.已知各个顶点都在同一球面上的正方体的棱长为2,则这个球的表面积为()A. B. C. D.10.设为等差数列的前项和,.若,则()A.的最大值为 B.的最小值为 C.的最大值为 D.的最小值为二、填空题:本大题共6小题,每小题5分,共30分。11.已知三个事件A,B,C两两互斥且,则P(A∪B∪C)=__________.12.如图,在直角梯形中,//是线段上一动点,是线段上一动点,则的最大值为________.13.在高一某班的元旦文艺晚会中,有这么一个游戏:一盒子内装有6张大小和形状完全相同的卡片,每张卡片上写有一个成语,它们分别为意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,从盒内随机抽取2张卡片,若这2张卡片上的2个成语有相同的字就中奖,则该游戏的中奖率为________.14.在等比数列中,,的值为______.15.一圆柱的侧面展开图是长、宽分别为3、4的矩形,则此圆柱的侧面积是________.16.已知,,那么的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆心在轴的正半轴上,且半径为2的圆被直线截得的弦长为.(1)求圆的方程;(2)设动直线与圆交于两点,则在轴正半轴上是否存在定点,使得直线与直线关于轴对称?若存在,请求出点的坐标;若不存在,请说明理由.18.已知的三个内角、、的对边分别是、、,的面积,(Ⅰ)求角;(Ⅱ)若中,边上的高,求的值.19.记Sn为等差数列an的前n项和,已知(1)求an(2)求Sn,并求S20.对于三个实数、、,若成立,则称、具有“性质”.(1)试问:①,0是否具有“性质2”;②(),0是否具有“性质4”;(2)若存在及,使得成立,且,1具有“性质2”,求实数的取值范围;(3)设,,,为2019个互不相同的实数,点()均不在函数的图象上,是否存在,且,使得、具有“性质2018”,请说明理由.21.设,已知函数,.(1)若是的零点,求不等式的解集:(2)当时,,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

不等式等价转化为,当时,得,当时,得,由此根据解集中恰有3个整数解,能求出的取值范围。【题目详解】关于的不等式,不等式可变形为,当时,得,此时解集中的整数为2,3,4,则;当时,得,,此时解集中的整数为-2,-1,0,则故a的取值范围是,选:A。【题目点拨】本题难点在于分类讨论解含参的二次不等式,由于二次不等式对应的二次方程的根大小不确定,所以要对和1的大小进行分类讨论。其次在观察的范围的时候要注意范围的端点能否取到,防止选择错误的B选项。2、B【解题分析】

由已知得到等差数列的公差,且数列的前11项大于1,自第11项起小于1,由,得出从到的值都大于零,时,时,,且,而当时,,由此可得答案.【题目详解】由,得,等差数列的公差,由,得,则数列的前11项大于1,自第11项起小于1.由,可得从到的值都大于零,当时,时,,且,当时,,所以取得最大值时的值为11.故选:B.【题目点拨】本题主要考查了数列递推式,以及数列的和的最值的判定,其中解答的关键是明确数列的项的特点,着重考查了分析问题和解答问题的能力,属于中档试题.3、A【解题分析】

判断每个函数在上的单调性即可.【题目详解】解:在上单调递增,,和在上都是单调递减.故选:A.【题目点拨】考查幂函数、指数函数、对数函数和反比例函数的单调性.4、C【解题分析】

利用等比数列的前项和公式列出方程组,能求出首项.【题目详解】等比数列的前项和为,,,,解得,.故选:.【题目点拨】本题考查等比数列的首项的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.5、B【解题分析】

根据平面的斜线的定义,即可作出判定,得到答案.【题目详解】由题意,直线是平面的斜线,由斜线的定义可知与平面相交但不垂直的直线叫做平面的斜线,所以在平面内肯定不存在与直线平行的直线.故答案为:B【题目点拨】本题主要考查了直线与平面的位置关系的判定及应用,其中解答中熟记平面斜线的定义是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6、B【解题分析】∵∴又,∴故选B.7、B【解题分析】

两边取倒数,可得新的等差数列,根据等差数列的通项公式,可得结果.【题目详解】由,所以则,又,所以所以数列是以2为首项,1为公比的等差数列所以,则所以故选:B【题目点拨】本题主要考查由递推公式得到等差数列,难点在于取倒数,学会观察,属基础题.8、C【解题分析】

分别求出n=k时左端的表达式,和n=k+1时左端的表达式,比较可得“n从k到k+1”左端需增乘的代数式.【题目详解】当n=k时,左端=(k+1)(k+2)(k+3)…(2k),当n=k+1时,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左边需增乘的代数式是故选:C.【题目点拨】本题考查用数学归纳法证明等式,分别求出n=k时左端的表达式和n=k+1时左端的表达式,是解题的关键.9、A【解题分析】

先求出外接球的半径,再求球的表面积得解.【题目详解】由题得正方体的对角线长为,所以.故选A【题目点拨】本题主要考查多面体的外接球问题和球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.10、C【解题分析】

由已知条件推导出(n2﹣n)d<2n2d,从而得到d>0,所以a1<0,a8>0,由此求出数列{Sn}中最小值是S1.【题目详解】∵(n+1)Sn<nSn+1,∴Sn<nSn+1﹣nSn=nan+1即na1na1+n2d,整理得(n2﹣n)d<2n2d∵n2﹣n﹣2n2=﹣n2﹣n<0∴d>0∵1<0∴a1<0,a8>0数列的前1项为负,故数列{Sn}中最小值是S1故选C.【题目点拨】本题考查等差数列中前n项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.二、填空题:本大题共6小题,每小题5分,共30分。11、0.9【解题分析】

先计算,再计算【题目详解】故答案为0.9【题目点拨】本题考查了互斥事件的概率计算,属于基础题型.12、2【解题分析】

建立平面直角坐标系,得到相应点的坐标及向量的坐标,把,利用向量的数量积转化为的函数,即可求解.【题目详解】建立如图所示的平面直角坐标系,因为,,所以,因为,,所以,因为,所以当时,取得最大值,最大值为.故答案为:.【题目点拨】本题主要考查了平面向量的线性运算,以及向量的数量积的运算的应用,其中解答中建立平面直角坐标系,结合向量的线性运算和数量积的运算,得到的函数关系式是解答的关键,着重考查了推理与运算能力,属于中档试题.13、【解题分析】

先列举出总的基本事件,在找出其中有2个成语有相同的字的基本事件个数,进而可得中奖率.【题目详解】解:先观察成语中的相同的字,用字母来代替这些字,气—A,风—B,马—C,信—D,河—E,意—F,用ABF,B,CF,CD,AE,DE分别表示成语意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,则从盒内随机抽取2张卡片有共15个基本事件,其中有相同字的有共6个基本事件,该游戏的中奖率为,故答案为:.【题目点拨】本题考查古典概型的概率问题,关键是要将符合条件的基本事件列出,是基础题.14、【解题分析】

由等比中项,结合得,化简即可.【题目详解】由等比中项得,得,设等比数列的公比为,化简.故答案为:4【题目点拨】本题考查了等比中项的性质,通项公式的应用,属于基础题.15、12【解题分析】

直接根据圆柱的侧面展开图的面积和圆柱侧面积的关系计算得解.【题目详解】因为圆柱的侧面展开图的面积和圆柱侧面积相等,所以此圆柱的侧面积为.故答案为:12【题目点拨】本题主要考查圆柱的侧面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.16、【解题分析】

首先根据题中条件求出角,然后代入即可.【题目详解】由题知,,所以,故.故答案为:.【题目点拨】本题考查了特殊角的三角函数值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)当点为时,直线与直线关于轴对称,详见解析【解题分析】

(1)设圆的方程为,由垂径定理求得弦长,再由弦长为可求得,从而得圆的方程;(2)假设存在定点,使得直线与直线关于轴对称,则,同时设,直线方程代入圆方程后用韦达定理得,即为,代入可求得,说明存在.【题目详解】(1)设圆的方程为:圆心到直线的距离根据垂径定理得,,解得,,故圆的方程为(2)假设存在定点,使得直线与直线关于轴对称,那么,设联立得:由.故存在,当点为时,直线与直线关于轴对称.【题目点拨】本题考查圆的标准方程,考查直线与圆的位置关系.在解决存在性命题时,一般都是假设存在,然后根据已知去推理求解.象本题定点问题,就是假设存在定点,用设而不求法推理求解,解出值,如不能解出值,说明不存在.18、(Ⅰ)(Ⅱ)【解题分析】

(Ⅰ)由面积公式推出,代入所给等式可得,求出角C的余弦值从而求得角C;(Ⅱ)首先由求出边c,再由面积公式代入相应值求出边b,利用余弦定理即可求出边a.【题目详解】(Ⅰ)由得①于是,即∴又,所以(Ⅱ),由得,将代入中得,解得.【题目点拨】本题考查余弦定理解三角形,三角形面积公式,属于基础题.19、(1)an=2n-12;(2)Sn【解题分析】

(1)设等差数列an的公差为d,根据题意求出d(2)根据等差数列的前n项和公式先求出Sn,再由an=2n-12≥0【题目详解】(1)因为数列an为等差数列,设公差为d由a3=-6,a6=0所以an(2)因为Sn为等差数列an的前所以Sn由an=2n-12≥0得所以当n=5或n=6时,【题目点拨】本题主要考查等差数列,熟记通项公式以及前n项和公式即可,属于常考题型.20、(1)①具有“性质2”,②不具有“性质4”;(2);(3)存在.【解题分析】

(1)①根据题意需要判断的真假即可②根据题意判断是否成立即可得出结论;(2)根据具有性质2可求出的范围,由存在性问题成立转化为,根据函数的性质求最值即可求解.【题目详解】(1)①因为,成立,所以,故,0具有“性质2”②因为,设,则设,对称轴为,所以函数在上单调递减,当时,,所以当时,不恒成立,即不成立,故(),0不具有“性质4”.(2)因为,1具有“性质2”所以化简得解得或.因为存在及,使得成立,所以存在及使即可.令,则,当时,,所以在上是增函数,所以时,,当时,,故时,因为在上单调递减,在上单调递增,所以,故只需满足即可,解得.(3)假设具有“性质2018”,则,即证明在任意2019个互不相同的实数中,一定存在两个实数,满足:.证明:由,令,由万能公式知,将等分成2018个小区间,则这2019个数必然有两个数落在同一个区间,令其为:,即,也就是说,在,,,这2019个数中,一定有两个数满足,即一定存在两个实数,满足,从而得证.【题目点拨】本题主要考查了不等式的证明,根据存在性问题求参数的取值范围,三角函数的单调性,万能公式,考查了创新能力,属于难题.21、(1);(2)【解题分析】

(1)利用可求得,将不等式化为;分别在和两种情况下解不等式可求得结果;(2)当时,,可将变为在上恒成立;分类讨论

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论