版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
邢台市重点中学2024届数学高一下期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是内任意一点,表示的面积,记,定义,已知,是的重心,则()A.点在内 B.点在内C.点在内 D.点与点重合2.设函数的最大值为,最小值为,则与满足的关系是()A. B.C. D.3.已知点,,则与向量方向相同的单位向量为()A. B. C. D.4.已知圆,圆,则圆与圆的位置关系是()A.相离 B.相交 C.外切 D.内切5.甲、乙、丙三人随机排成一排,乙站在中间的概率是()A. B. C. D.6.如图所示,在ΔABC,已知∠A:∠B=1:2,角C的平分线CD把三角形面积分为3:2两部分,则cosAA.13 B.12 C.37.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是()A. B.C. D.8.下列结论中错误的是()A.若,则 B.函数的最小值为2C.函数的最小值为2 D.若,则函数9.将函数f(x)=sin(ωx+)(ω>0)的图象向左平移个单位,所得到的函数图象关于y轴对称,则函数f(x)的最小正周期不可能是()A. B. C. D.10.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.18二、填空题:本大题共6小题,每小题5分,共30分。11.将角度化为弧度:________.12.在中,角、、所对应边分别为、、,,的平分线交于点,且,则的最小值为______13.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.14.关于函数有下列命题:①由可得必是的整数倍;②的图像关于点对称,其中正确的序号是____________.15.(如下图)在正方形中,为边中点,若,则__________.16.直线的倾斜角的大小是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数.(1)求不等式的解集;(2)若对于,恒成立,求的取值范围.18.已知,函数,.(1)若在上单调递增,求正数的最大值;(2)若函数在内恰有一个零点,求的取值范围.19.在中,内角、、的对边分别为、、,且.(1)求角的大小;(2)若,求的最大值及相应的角的余弦值.20.已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.(1)若,证明:函数必有局部对称点;(2)若函数在区间内有局部对称点,求实数的取值范围;(3)若函数在上有局部对称点,求实数的取值范围.21.已知.(1)若不等式的解集为,求的值;(2)解不等式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】解:由已知得,f(P)=(λ1,λ2,λ3)中的三个坐标分别为P分△ABC所得三个三角形的高与△ABC的高的比值,∵f(Q)=(1/2,1/3,1/6)∴P离线段AB的距离最近,故点Q在△GAB内由分析知,应选A.2、B【解题分析】
将函数化为一个常数函数与一个奇函数的和,再利用奇函数的对称性可得答案.【题目详解】因为,令,则,所以为奇函数,所以,所以,故选:B【题目点拨】本题考查了两角差的余弦公式,考查了奇函数的对称性的应用,属于中档题.3、A【解题分析】
由题得,设与向量方向相同的单位向量为,其中,利用列方程即可得解.【题目详解】由题可得:,设与向量方向相同的单位向量为,其中,则,解得:或(舍去)所以与向量方向相同的单位向量为故选A【题目点拨】本题主要考查了单位向量的概念及方程思想,还考查了平面向量共线定理的应用,考查计算能力,属于较易题.4、C【解题分析】,,,,,即两圆外切,故选.点睛:判断圆与圆的位置关系的常见方法(1)几何法:利用圆心距与两半径和与差的关系.(2)切线法:根据公切线条数确定.(3)数形结合法:直接根据图形确定5、B【解题分析】
先求出甲、乙、丙三人随机排成一排的基本事件的个数,再求出乙站在中间的基本事件的个数,再求概率即可.【题目详解】解:三个人排成一排的所有情况有:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙乙甲,丙甲乙共6种,乙在中间有2种,所以乙在中间的概率为,故选B.【题目点拨】本题考查了古典概型,属基础题.6、C【解题分析】
由两个三角形的面积比,得到边ACCB=32,利用正弦定理【题目详解】∵角C的平分线CD,∴∠ACD=∠BCD∵S∴设AC=3x,CB=2x,∵∠A:∠B=1:2,设∠A=α,∠B=2α,在ΔABC中,利用正弦定理2xsin解得:cosα=【题目点拨】本题考查三角形面积公式、正弦定理在平面几何中的综合应用.7、C【解题分析】
将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-);再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C.8、B【解题分析】
根据均值不等式成立的条件逐项分析即可.【题目详解】对于A,由知,,所以,故选项A本身正确;对于B,,但由于在时不可能成立,所以不等式中的“”实际上取不到,故选项B本身错误;对于C,因为,当且仅当,即时,等号成立,故选项C本身正确;对于D,由知,,所以lnx+=-2,故选项D本身正确.故选B.【题目点拨】本题主要考查了均值不等式及不等式取等号的条件,属于中档题.9、D【解题分析】
利用函数y=Asin(ωx+φ)的图象变换规律,对称性和周期性,求得函数的最小正周期为,由此得出结论.【题目详解】解:将函数的图象向左平移个单位,可得的图象,根据所得到的函数图象关于轴对称,可得,即,.函数的最小正周期为,则函数的最小正周期不可能是,故选.【题目点拨】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,对称性和周期性,属于基础题.10、C【解题分析】试题分析:由直方图可得分布在区间第一组与第二组共有21人,分布在区间第一组与第二组的频率分别为1.24,1.16,所以第一组有12人,第二组8人,第三组的频率为1.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.考点:频率分布直方图二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据角度和弧度的互化公式求解即可.【题目详解】.故答案为:.【题目点拨】本题考查角度和弧度的互化公式,属于基础题.12、18【解题分析】
根据三角形面积公式找到的关系,结合基本不等式即可求得最小值.【题目详解】根据题意,,因为的平分线交于点,且,所以而所以,化简得则当且仅当,即,时取等号,即最小值为.故答案为:【题目点拨】本题考查三角形面积公式和基本不等式,考查计算能力,属于中等题型13、【解题分析】分析:由题意利用待定系数法求解圆的方程即可.详解:设圆的方程为,圆经过三点(0,0),(1,1),(2,0),则:,解得:,则圆的方程为.点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.14、②【解题分析】
对①,可令求出的通式,再进行判断;对②,将代入检验是否为0即可【题目详解】对①,令得,可令,,①错;对②,当时,,②对故正确序号为:②故答案为②【题目点拨】本题考查三角函数的基本性质,属于基础题15、【解题分析】∵,根据向量加法的三角形法则,得到∴λ=1,.则λ+μ=.故答案为.点睛:此题考查的是向量的基本定理及其分解,由条件知道,题目中要用和,来表示未知向量,故题目中要通过正方形的边长和它特殊的直角,来做基底,表示出要求的向量,根据平面向量基本定理,系数具有惟一性,得到结果.16、【解题分析】试题分析:由题意,即,∴.考点:直线的倾斜角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解题分析】
(1)由得,然后分、、三种情况来解不等式;(2)由恒成立,由参变量分离法得出,并利用基本不等式求出在上的最小值,即可得出实数的取值范围.【题目详解】(1),,.当时,不等式的解集为;当时,原不等式为,该不等式的解集为;当时,不等式的解集为;(2)由题意,当时,恒成立,即时,恒成立.由基本不等式得,当且仅当时,等号成立,所以,,因此,实数的取值范围是.【题目点拨】本题考查含参二次不等式的解法,同时也考查了利用二次不等式恒成立求参数的取值范围,在含单参数的二次不等式恒成立问题时,可充分利用参变量分离法,转化为函数的最值来求解,可避免分类讨论,考查化归与转化思想的应用,属于中等题.18、(1)(2)【解题分析】
(1)求出的单调递增区间,令,得,可知区间,即可求出正数的最大值;(2)令,当时,,可将问题转化为在的零点问题,分类讨论即可求出答案.【题目详解】解:(1)由,得,.因为在上单调递增,令,得时单调递增,所以解得,可得正数的最大值为.(2),设,当时,.它的图形如图所示.又,则,,令,则函数在内恰有一个零点,可知在内最多一个零点.①当0为的零点时,显然不成立;②当为的零点时,由,得,把代入中,得,解得,,不符合题意.③当零点在区间时,若,得,此时零点为1,即,由的图象可知不符合题意;若,即,设的两根分别为,,由,且抛物线的对称轴为,则两根同时为正,要使在内恰有一个零点,则一个根在内,另一个根在内,所以解得.综上,的取值范围为.【题目点拨】本题考查了三角函数的单调性的应用,考查了函数的零点,考查了分类讨论的数学思想,考查了学生的推理能力与计算求解能力,属于难题.19、(1)(2)的最大值为,此时【解题分析】
(1)由正弦定理边角互化思想结合内角和定理、诱导公式可得出的值,结合角的取值范围可得出角的大小;(2)由正弦定理得出,,然后利用三角恒等变换思想将转化为关于角的三角函数,可得出的值,并求出的值.【题目详解】(1)由正弦定理得,即,从而有,即,由得,因为,所以;(2)由正弦定理可知,,则有,,,其中,因为,所以,所以当时,取得最大值,此时,所以,的最大值为,此时.【题目点拨】本题考查正弦定理边角互化思想的应用,考查内角和定理、诱导公式,以及三角形中最值的求解,求解时常利用正弦定理将边转化为角的三角函数来求解,解题时要充分利用三角恒等变换思想将三角函数解析式化简,考查运算求解能力,属于中等题.20、(1)见解析;(2);(3)【解题分析】
试题分析:(1)利用题中所给的定义,通过二次函数的判别式大于0,证明二次函数有局部对称点;(2)利用方程有解,通过换元,转化为打钩函数有解问题,利用函数的图象,确定实数c的取值范围;(3)利用方程有解,通过换元,转化为二次函数在给定区间有解,建立不等式组,通过解不等式组,求得实数的取值范围.试题解析:(1)由得=,代入得,=,得到关于的方程=).其中,由于且,所以恒成立,所以函数=)必有局部对称点.(2)方程=在区间上有解,于是,设),,,其中,所以.(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 长春信息技术职业学院《自动化实践初步》2023-2024学年第一学期期末试卷
- 玉林师范学院《结构模型设计制作》2023-2024学年第一学期期末试卷
- 市场波动下的投资决策风险分析
- 财务战略述职报告模板
- 保险业务月度报告模板
- 保险行业发展展望模板
- 实施环保生活讲座
- 社团招新简报
- 统编版六年级语文上册寒假作业(十一)(有答案)
- 2025年四川省眉山市区县高考数学一诊模拟试卷(含答案)
- 英语现在完成时专项练习题(附答案)
- 制造样品生产作业指导书
- 服务经营培训课件ppt 老客户经营综合版
- MT/T 199-1996煤矿用液压钻车通用技术条件
- GB/T 6144-1985合成切削液
- GB/T 10357.1-2013家具力学性能试验第1部分:桌类强度和耐久性
- 公寓de全人物攻略本为个人爱好而制成如需转载注明信息
- 第5章-群体-团队沟通-管理沟通
- 肾脏病饮食依从行为量表(RABQ)附有答案
- 深基坑-安全教育课件
- 园林施工管理大型园林集团南部区域养护标准图例
评论
0/150
提交评论