2024届江苏省常州市奔牛高级中学高一数学第二学期期末统考试题含解析_第1页
2024届江苏省常州市奔牛高级中学高一数学第二学期期末统考试题含解析_第2页
2024届江苏省常州市奔牛高级中学高一数学第二学期期末统考试题含解析_第3页
2024届江苏省常州市奔牛高级中学高一数学第二学期期末统考试题含解析_第4页
2024届江苏省常州市奔牛高级中学高一数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省常州市奔牛高级中学高一数学第二学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,将边长为的正方形沿对角线折成大小等于的二面角分别为的中点,若,则线段长度的取值范围为()A. B.C. D.2.在正方体中,为棱的中点,则异面直线与所成角的余弦值为()A. B. C. D.3.把函数,图象上所有的点向右平行移动个单位长度,横坐标伸长到原来的2倍,所得图象对应的函数为()A. B.C. D.4.已知数列是等差数列,,则(

)A.36 B.30 C.24

D.15.设、、为平面,为、、直线,则下列判断正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则6.若双曲线的渐近线与直线所围成的三角形面积为2,则该双曲线的离心率为()A. B. C. D.7.已知是偶函数,且时.若时,的最大值为,最小值为,则()A.2 B.1 C.3 D.8.函数的最小值为(

)A.6 B.7 C.8 D.99.在区间上随机地取一个数.则的值介于0到之间的概率为().A. B. C. D.10.在中,若,,,则等于()A.3 B.4 C.5 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.过点且在坐标轴上的截距相等的直线的一般式方程是________.12.已知圆的圆心在直线,与y轴相切,且被直线截得的弦长为,则圆C的标准方程为________.13.若采用系统抽样的方法从420人中抽取21人做问卷调查,为此将他们随机编号为1,2,…,420,则抽取的21人中,编号在区间[241,360]内的人数是______14.在中,,是线段上的点,,若的面积为,当取到最大值时,___________.15.若函数,的最大值为,则的值是________.16.直棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知偶函数.(1)若方程有两不等实根,求的范围;(2)若在上的最小值为2,求的值.18.已知(且)是R上的奇函数,且.(1)求的解析式;(2)若关于x的方程在区间内只有一个解,求m的取值集合;(3)设,记,是否存在正整数n,使不得式对一切均成立?若存在,求出所有n的值,若不存在,说明理由.19.已知数列的前项和为,.(1)求数列的通项公式(2)数列的前项和为,若存在,使得成立,求范围?20.甲、乙两台机床同时加工直径为10cm的零件,为了检验零件的质量,从零件中各随机抽取6件测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差(2)根据(1)的计算结果,说明哪一台机床加工的零件更符合要求.21.如图,在平面直角坐标系中,点,直线,设圆的半径为1,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

连接和,由二面角的定义得出,由结合为的中点,可知是的角平分线且,由的范围可得出的范围,于是得出的取值范围.【题目详解】连接,可得,即有为二面角的平面角,且,在等腰中,,且,,则,故答案为,故选A.【题目点拨】本题考查线段长度的取值范围,考查二面角的定义以及锐角三角函数的定义,解题的关键在于充分研究图形的几何特征,将所求线段与角建立关系,借助三角函数来求解,考查推理能力与计算能力,属于中等题.2、D【解题分析】

利用,得出异面直线与所成的角为,然后在中利用锐角三角函数求出.【题目详解】如下图所示,设正方体的棱长为,四边形为正方形,所以,,所以,异面直线与所成的角为,在正方体中,平面,平面,,,,,在中,,,因此,异面直线与所成角的余弦值为,故选D.【题目点拨】本题考查异面直线所成角的计算,一般利用平移直线,选择合适的三角形,利用锐角三角函数或余弦定理求解,考查推理能力与计算能力,属于中等题.3、C【解题分析】

利用二倍角的余弦公式以及辅助角公式将函数化为的形式,然后再利用三角函数的图像变换即可求解.【题目详解】函数,函数图象上所有的点向右平行移动个单位长度可得,在将横坐标伸长到原来的2倍,可得.故选:C【题目点拨】本题考查了二倍角的余弦公式、辅助角公式以及三角函数的图像平移伸缩变换,需熟记公式,属于基础题.4、B【解题分析】

通过等差中项的性质即可得到答案.【题目详解】由于,故,故选B.【题目点拨】本题主要考查等差数列的性质,难度较小.5、D【解题分析】

根据线面、面面有关的定理,对四个选项逐一分析,由此得出正确选项.【题目详解】A选项不正确,因为根据面面垂直的性质定理,需要加上:在平面内或者平行于,这个条件,才能判定.B选项不正确,因为可能平行于.C选项不正确,因为当时,或者.D选项正确,根据垂直于同一条直线的两个平面平行,得到,直线,则可得到.综上所述,本小题选D.【题目点拨】本小题主要考查空间线面、面面位置关系有关命题真假性的判断,属于基础题.6、A【解题分析】渐近线为,时,,所以,即,,,故选A.7、B【解题分析】

根据函数的对称性得到原题转化为直接求的最大和最小值即可.【题目详解】因为函数是偶函数,函数图像关于y轴对称,故得到时,的最大值和最小值,与时的最大值和最小值是相同的,故直接求的最大和最小值即可;根据对勾函数的单调性得到函数的最小值为,,故最大值为,此时故答案为:B.【题目点拨】这个题目考查了函数的奇偶性和单调性的应用,属于基础题。对于函数的奇偶性,主要是体现函数的对称性,这样可以根据对称性得到函数在对称区间上的函数值的关系,使得问题简化.8、C【解题分析】

直接利用均值不等式得到答案.【题目详解】,时等号成立.故答案选C【题目点拨】本题考查了均值不等式,属于简单题.9、D【解题分析】

由,得.由函数的图像知,使的值介于0到之间的落在和之内.于是,所求概率为.故答案为D10、D【解题分析】

直接运用正弦定理求解即可.【题目详解】由正弦定理可知中:,故本题选D.【题目点拨】本题考查了正弦定理的应用,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解题分析】

讨论直线过原点和直线不过原点两种情况,分别计算得到答案.【题目详解】当直线过原点时,设,过点,则,即;当直线不过原点时,设,过点,则,即;综上所述:直线方程为或.故答案为:或.【题目点拨】本题考查了直线方程,漏解是容易发生的错误.12、或【解题分析】

由圆心在直线x﹣3y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,距离d,由圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【题目详解】设圆心为(3t,t),半径为r=|3t|,则圆心到直线y=x的距离d|t|,而()2=r2﹣d2,9t2﹣2t2=7,t=±1,∴圆心是(3,1)或(-3,-1)故答案为或.【题目点拨】本题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.13、6【解题分析】试题分析:由题意得,编号为,由得共6个.考点:系统抽样14、【解题分析】

由三角形的面积公式得出,设,由可得出,利用基本不等式可求出的值,利用等号成立可得出、的值,再利用余弦利用可得出的值.【题目详解】由题意可得,解得,设,则,可得,由基本不等式可得,当且仅当时,取得最大值,,,由余弦定理得,解得.故答案为.【题目点拨】本题考查余弦定理解三角形,同时也考查了三角形的面积公式以及利用基本不等式求最值,在利用基本不等式求最值时,需要结合已知条件得出定值条件,同时要注意等号成立的条件,考查分析问题和解决问题的能力,属于中等题.15、【解题分析】

利用两角差的正弦公式化简函数的解析式为,由的范围可得的范围,根据最大值可得的值.【题目详解】∵函数=2()=,∵,∴∈[,],又∵的最大值为,所以的最大值为,即=,解得.故答案为【题目点拨】本题主要考查两角差的正弦公式的应用,正弦函数的定义域和最值,属于基础题.16、【解题分析】试题分析:画出图形,找出BM与AN所成角的平面角,利用解三角形求出BM与AN所成角的余弦值.解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC的中点为O,连结ON,MN,OB,∴MNOB,∴MN0B是平行四边形,∴BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB==,在△ANO中,由余弦定理得:cos∠ANO===.故答案为.考点:异面直线及其所成的角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解题分析】

(1)由偶函数的定义,利用,求得的值,再由对数函数的单调性,结合题设条件,即可求解实数的范围;(2)利用换元法和对勾函数的单调性,以及二次函数的闭区间上的求法,分类讨论对称轴和区间的关系,即可求解.【题目详解】(1)因为,所以的定义域为,因为是偶函数,即,所以,故,所以,即方程的解为一切实数,所以,因为,且,所以原方程转化为,令,,所以所以在上是减函数,是增函数,当时,使成立的有两个,又由知,与一一对应,故当时,有两不等实根;(2)因为,所以,所以,令,则,令,设,则,因为,所以,即在上是增函数,所以,设,则.(i)当时,的最小值为,所以,解得,或4(舍去);(ii)当时,的最小值为,不合题意;(iii)当时,的最小值为,所以,解得,或(舍去).综上知,或.【题目点拨】本题主要考查了函数的综合应用,其中解答中涉及到函数的奇偶性,对数函数的图象与性质,以及换元法和分类讨论思想的应用,试题综合性强,属于难题,着重考查了分析问题和解答问题的能力,以及推理与运算能力.18、(1);(2)m的取值集合或}(3)存在,【解题分析】

(1)利用奇函数的性质得到关于实数k的方程,解方程即可,注意验证所得的结果;(2)结合函数的单调性和函数的奇偶性脱去f的符号即可;(3)可得,即可得:即可.【题目详解】(1)由奇函数的性质可得:,解方程可得:.此时,满足,即为奇函数.的解析式为:;(2)函数的解析式为:,结合指数函数的性质可得:在区间内只有一个解.即:在区间内只有一个解.(i)当时,,符合题意.(ii)当时,只需且时,,此时,符合题意综上,m的取值集合或}(3)函数为奇函数关于对称又当且仅当时等号成立所以存在正整数n,使不得式对一切均成立.【题目点拨】本题考查了复合型指数函数综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于难题.19、(1);(2)【解题分析】

(1)根据之间关系,可得结果(2)利用错位相减法,可得,然后使用分离参数的方法,根据单调性,计算其范围,可得结果.【题目详解】(1)当时,两式相减得:当时,,不符合上式所以(2)令,所以所以令①②所以①-②:则化简可得故,若存在,使得成立即存在,成立故,由,则所以可知数列在单调递增所以,故【题目点拨】本题考查了之间关系,还考查了错位相减法求和,本题难点在于的求法,重点在于错位相减法的应用,属中档题.20、(1)见解析;(2)乙机床加工的零件更符合要求.【解题分析】

(1)直接由平均数和方差的计算公式代入数据进行计算即可.

(2)由平均数和方差各自说明数据的特征,做出判断.【题目详解】(1),,,.(2)因为,,说明甲、乙机床加工的零件的直径长度的平均值相同.且甲机床加工的零件的直径长度波动比较大,

因此乙机床加工的零件更符合要求.【题目点拨】本题考查计算数据的平均数和方差以及根据数据的平均数和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论