新疆沙雅县第二中学2024届数学高一下期末综合测试模拟试题含解析_第1页
新疆沙雅县第二中学2024届数学高一下期末综合测试模拟试题含解析_第2页
新疆沙雅县第二中学2024届数学高一下期末综合测试模拟试题含解析_第3页
新疆沙雅县第二中学2024届数学高一下期末综合测试模拟试题含解析_第4页
新疆沙雅县第二中学2024届数学高一下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆沙雅县第二中学2024届数学高一下期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在数列{an}中,若a1,且对任意的n∈N*有,则数列{an}前10项的和为()A. B. C. D.2.若,,则()A. B. C. D.3.供电部门对某社区1000位居民2019年4月份人均用电情况进行统计后,按人均用电量分为[0,10),[10,20),[20,30),[40,50]五组,整理得到如下的频率分布直方图,则下列说法错误的是()A.4月份人均用电量人数最多的一组有400人B.4月份人均用电量不低于20度的有500人C.4月份人均用电量为25度D.在这1000位居民中任选1位协助收费,选到的居民用电量在[30,40)一组的概率为14.已知正方形的边长为,若将正方形沿对角线折叠为三棱锥,则在折叠过程中,不能出现()A. B.平面平面 C. D.5.函数的最大值为()A. B. C. D.6.已知命题,则命题的否定为()A. B.C. D.7.得到函数的图象,只需将的图象()A.向左移动 B.向右移动 C.向左移动 D.向右移动8.如图是一个正四棱锥,它的俯视图是()A. B.C. D.9.已知,是平面,m,n是直线,则下列命题不正确的是()A.若,则 B.若,则C.若,则 D.若,则10.若是等差数列,首项,,,则使前n项和成立的最大正整数n=()A.2017 B.2018 C.4035 D.4034二、填空题:本大题共6小题,每小题5分,共30分。11.空间一点到坐标原点的距离是_______.12.在直角坐标系中,直线与直线都经过点,若,则直线的一般方程是_____.13.已知角的终边经过点,则______.14.设为内一点,且满足关系式,则________.15.已知圆的圆心在直线上,半径为,若圆上存在点,它到定点的距离与到原点的距离之比为,则圆心的纵坐标的取值范围是__________.16.已知,,且,则的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)若三点共线,求实数的值;(2)证明:对任意实数,恒有成立.18.某城市理论预测2020年到2024届人口总数与年份的关系如下表所示:年份202x(年)01234人口数y(十万)5781119(1)请在右面的坐标系中画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(3)据此估计2025年该城市人口总数.(参考公式:,)19.已知为锐角,.(1)求的值;(2)求的值.20.已知余切函数.(1)请写出余切函数的奇偶性,最小正周期,单调区间;(不必证明)(2)求证:余切函数在区间上单调递减.21.已知是等差数列,设数列的前n项和为,且,,又,.(1)求和的通项公式;(2)令,求的前n项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

用累乘法可得.利用错位相减法可得S,即可求解S10=22.【题目详解】∵,则.∴,.Sn,.∴,∴S,则S10=22.故选:A.【点评】本题考查了累乘法求通项,考查了错位相减法求和,意在考查计算能力,属于中档题.2、D【解题分析】

利用集合的补集的定义求出的补集;利用子集的定义判断出.【题目详解】解:,,,,故选:.【题目点拨】本题考查利用集合的交集、补集、并集定义求交集、补集、并集;利用集合包含关系的定义判断集合的包含关系.3、C【解题分析】

根据频率分布直方图逐一计算分析.【题目详解】A:用电量最多的一组有:0.04×10×1000=400人,故正确;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正确;C:人均用电量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故错误;D:用电量在[30,40)的有:0.01×10×1000=100人,所以P=100故选C.【题目点拨】本题考查利用频率分布直方图求解相关量,难度较易.频率分布直方图中平均数的求法:每一段的组中值×频率4、D【解题分析】对于A:取BD中点O,因为,AO所以面AOC,所以,故A对;对于B:当沿对角线折叠成直二面角时,有面平面平面,故B对;对于C:当折叠所成的二面角时,顶点A到底面BCD的距离为,此时,故C对;对于D:若,因为,面ABC,所以,而,即直角边长与斜边长相等,显然不对;故D错;故选D点睛:本题考查了立体几何中折叠问题,要分析清楚折叠前后的变化量与不变量以及线线与线面的位置关系,属于中档题.5、D【解题分析】

令,根据正弦型函数的性质可得,那么,可将问题转化为二次函数在定区间上的最值问题.【题目详解】由题意,令,可得,,∴,∴原函数的值域与函数的值域相同.∵函数图象的对称轴为,,取得最大值为.故选:D.【题目点拨】本题考查三角函数中的恒等变换、函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意换元法的使用,将问题转化为二次函数的值域问题.6、C【解题分析】

根据全称命题的否定是特称命题,可直接得出结果.【题目详解】命题“”的否定是“”.故选C【题目点拨】本题主要考查全称命题的否定,只需改量词和结论即可,属于基础题型.7、B【解题分析】

直接利用三角函数图象的平移变换法则,对选项中的变换逐一判断即可.【题目详解】函数的图象,向左平移个单位,得,错;函数的图象,向右平移个单位,得,对.函数的图象,向左平移个单位,得,错;函数的图象,向右平移个单位,得,错,故选B.【题目点拨】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.8、D【解题分析】

根据正四棱锥的特征直接判定即可.【题目详解】正四棱锥俯视图可以看到四条侧棱与顶点,且整体呈正方形.故选:D【题目点拨】本题主要考查了正四棱锥的俯视图,属于基础题.9、D【解题分析】

由题意找到反例即可确定错误的选项.【题目详解】如图所示,在正方体中,取直线m为,平面为,满足,取平面为平面,则的交线为,很明显m和n为异面直线,不满足,选项D错误;如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,所以A正确;如果两个平面与同一条直线垂直,则这两个平面平行,所以B正确;由A选项和面面垂直的判定定理可得C也正确.本题答案为D.【题目点拨】本题主要考查线面关系有关命题真假的判断,意在考查学生的转化能力和逻辑推理能力,属基础题.10、D【解题分析】

由等差数列的性质可得,,由等差数列前项和公式可得则,,得解.【题目详解】解:由是等差数列,又,所以,又首项,,则,,则,,即使前n项和成立的最大正整数,故选:D.【题目点拨】本题考查了等差数列的性质,重点考查了等差数列前项和公式,属中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

直接运用空间两点间距离公式求解即可.【题目详解】由空间两点距离公式可得:.【题目点拨】本题考查了空间两点间距离公式,考查了数学运算能力.12、【解题分析】

点代入的方程求出k,再由求出直线的斜率,即可写出直线的点斜式方程.【题目详解】将点代入直线得,,解得,又,,于是的方程为,整理得.故答案为:【题目点拨】本题考查直线的方程,属于基础题.13、【解题分析】由题意,则.14、【解题分析】

由题意将已知中的向量都用为起点来表示,从而得到32,分别取AB、AC的中点为D、E,可得2,利用平面知识可得S△AOB与S△AOC及S△BOC与S△ABC的关系,可得所求.【题目详解】∵,∴32,∴2,分别取AB、AC的中点为D、E,∴2,∴S△AOBS△ABFS△ABCS△ABC;S△AOCS△ACFS△ABCS△ABC;S△BOCS△ABC,∴故答案为:.【题目点拨】本题考查向量的加减法运算,体现了数形结合思想,解答本题的关键是利用向量关系画出助解图形.15、【解题分析】因为圆心在直线上,设圆心,则圆的方程为,设点,因为,所以,化简得,即,所以点在以为圆心,为半径的圆上,则,即,整理得,由,得,由,得,所以圆心的纵坐标的取值范围是.点睛:本题主要考查了圆的方程,动点的轨迹方程、两圆的位置关系、解不等式等知识的综合运用,着重考查了转化与化归思想和学生的运算求解能力,解答中根据题设条件得到动点的轨迹方程,利用两圆的位置关系,列出不等式上解答的关键.对于直线与圆的位置关系问题,要熟记有关圆的性质,同时注意数形结合思想的灵活运用.16、【解题分析】

由,可得,然后利用基本不等式可求出最小值.【题目详解】因为,所以,当且仅当,时取等号.【题目点拨】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-3;(2)证明见解析.【解题分析】分析:(1)由题意可得,结合三点共线的充分必要条件可得.(2)由题意结合平面向量数量积的坐标运算法则可得,则恒有成立.详解:(1),∵三点共线,∴,∴.(2),∴,∴恒有成立.点睛:本题主要考查平面向量数量积的运算法则,二次函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.18、(1)见解析;(2);(3)2025年该城市人口总数为196万人【解题分析】

(1)由表中数据描点即可;(2)由最小二乘法的公式得出的值,即可得出该线性方程;(3)将代入(2)中的线性方程,即可得出2025年该城市人口总数.【题目详解】(1)画出散点图如图所示.(2),,,,,,则线性回归方程.(3)时,(十万)(万).答:估计2025年该城市人口总数为196万人【题目点拨】本题主要考查了绘制散点图,求回归直线方程以及根据回归方程进行数据估计,属于中档题.19、(1);(2).【解题分析】

(1)由二倍角公式,结合题意,可直接求出结果;(2)先由题意求出,,根据,由两角差的正弦公式,即可求出结果.【题目详解】(1)因为,所以;(2)因为为锐角,所以,,又,所以,,所以.【题目点拨】本题主要考查三角恒等变换给值求值的问题,熟记二倍角公式,以及两角差的正弦公式即可,属于常考题型.20、(1)奇函数;周期为,单调递减速区间:(2)证明见解析【解题分析】

(1)直接利用函数的性质写出结果.(2)利用单调性的定义和三角函数关系式的变换求出结果.【题目详解】(1)奇函数;周期为,单调递减区间:(2)任取,,,有因为,所以,于是,,从而,.因此余切函数在区间上单调递减.【题目点拨】本题考查的知识要点:三角函数关系式的恒等变变换,函数关系式的应用,主要考查学生的运算能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论