版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章圆3.3垂径定理等腰三角形是轴对称图形吗?如果将一等腰三角形沿底边上的高对折,可以发现什么结论?如果以这个等腰三角形的顶角顶点为圆心,腰长为半径画圆,得到的图形是否是轴对称图形呢?类比引入③AM=BM,●OABCDM└①CD是直径②CD⊥AB可推得⌒⌒④AC=BC,⌒⌒⑤AD=BD.条件结论
如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M。
(1)该图是轴对称图形吗?如果是,其对称轴是什么?
(2)你能图中有哪些等量关系?说一说你的理由。猜想探索连接OA,OB,则OA=OB.●OABCDM└在Rt△OAM和Rt△OBM中,∵OA=OB,OM=OM,∴Rt△OAM≌Rt△OBM(HL).∴AM=BM.∠AOC=∠BOC∴点A和点B关于CD对称.∵⊙O关于直径CD对称,∴当圆沿着直径CD对折时,点A与点B重合,⌒⌒AC和BC重合,⌒⌒AD和BD重合.⌒⌒∴AC=BC,⌒⌒
AD=BD.●OABCDM└CD⊥AB,∵CD是直径,∴AM=BM,⌒⌒AC=BC,⌒⌒AD=BD.垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。(包括优弧和劣弧)几何语言垂径定理条件结论(1)过圆心(2)垂直于弦}{(3)平分弦(4)平分弦所对的优弧(5)平分弦所对的劣弧分析CD为直径,CD⊥AB}{点C平弧ACB点D平分弧ADB1.判断下列图形,能否使用垂径定理?OCDBA注意:定理中的两个条件缺一不可——直径(半径),垂直于弦××√想一想BOCDAOCDE2、请画图说明垂径定理的条件和结论.垂径定理的逆定理●OCD●AB如图,AB是⊙O的弦(不是直径),作一条平分AB的直径CD,交AB于点M.(1)下图是轴对称图形吗?如果是,其对称轴是什么?
(2)图中有哪些等量关系?说一说你的理由.M③CD⊥AB,垂径定理的逆定理●OCD
由①CD是直径②AM=BM可推得⌒⌒④AC=BC,⌒⌒⑤AD=BD.●AB平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图,AB是⊙O的弦(不是直径),作一条平分AB的直径CD,交AB于点M.垂径定理的推论的题设和结论可用符号语言表示为:为什么要强调这条弦不是直径?是因为若弦是直径,则直径之间即使互相平分,也不一定互相垂直。M平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如果该定理少了“不是直径”,是否也能成立?想一想OCDBAEODCF例:如图,一条公路的转弯处是一段圆弧(即图中CD,点0是CD所在圆的圆心),其中CD=600m,E为CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径。⌒⌒⌒知识应用解这个方程,得R=545.EODCF解:连接OC,设弯路的半径为Rm,则OF=(R-90)m。∵OE⊥CD根据勾股定理,得OC²=CF²+OF²即R²=300²+(R-90)².所以,这段弯路的半径为545m.1、1400年前,我国隋朝建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(即弧的中点到弦的距离)为7.2米,求桥拱所在圆的半径。(结果精确到0.1米)。随堂练习2、如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?OCDBAOCDBAOCDBAFE有三种情况:1、圆心在平行弦外;2、圆心在其中一条弦上;3、圆心在平行弦内。随堂练习若⊙O中弦AB∥CD。那么AC=BD吗?为什么?⌒⌒解:AC=BD,理由是:作直径MN⊥AB。∵AB∥CD,∴MN⊥CD∴AM=BM,CM=DM(垂直于弦的直径平分弦所对的弧)∵AM-CM=BM-DM∴AC=BD⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒.MCDABON⌒⌒1、利用圆的轴对称性研究了垂径定理及其逆定理.2、解决有关弦的问题,经常是过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《环境经济价值评估》课件
- 《市场行销概述》课件
- 《室内空间设计方法》课件
- 健康管理集团
- 矿山电力工程合同文本
- 古建筑修复工程合同
- 建筑照明施工合同范本
- 汕头市商业用地租赁合同
- 跨国公司财务部管理办法
- 教师师德承诺书:追求卓越教育
- 便利店运营部年终总结
- 幕墙工程冬季施工方案
- 四年级数学三位数除以两位数综合练习例题大全附答案
- 2023-2024学年全国小学四年级上语文人教版期末试卷(含答案解析)
- 华润双鹤财务报表分析报告
- 牙科诊所传染病报告制度
- 以诺书-中英对照
- 精神科护士进修汇报
- 2024年新人教版四年级数学上册《第5单元第6课时 平行四边形和梯形复习》教学课件
- 《北斗每一颗星都在闪亮》教案- 2023-2024学年高教版(2023)中职语文职业模块
- 咪咕在线测评题
评论
0/150
提交评论