2024届湖南省长沙市开福区青竹湖湘一外国语学校九年级数学第一学期期末预测试题含解析_第1页
2024届湖南省长沙市开福区青竹湖湘一外国语学校九年级数学第一学期期末预测试题含解析_第2页
2024届湖南省长沙市开福区青竹湖湘一外国语学校九年级数学第一学期期末预测试题含解析_第3页
2024届湖南省长沙市开福区青竹湖湘一外国语学校九年级数学第一学期期末预测试题含解析_第4页
2024届湖南省长沙市开福区青竹湖湘一外国语学校九年级数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省长沙市开福区青竹湖湘一外国语学校九年级数学第一学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:X﹣1013y﹣33下列结论:(1)abc<0;(2)当x>1时,y的值随x值的增大而减小;(3)16a+4b+c<0;(4)抛物线与坐标轴有两个交点;(5)x=3是方程ax2+(b﹣1)x+c=0的一个根;其中正确的个数为()A.5个 B.4个 C.3个 D.2个2.如图,当刻度尺的一边与⊙O相切时,另一边与⊙O的两个交点处的读数如图所示(单位:cm),圆的半径是5,那么刻度尺的宽度为()A.cm B.4cm C.3cm D.2cm3.如图,点是线段的垂直平分线与的垂直平分线的交点,若,则的度数是()A. B. C. D.4.如图,的直径的长为,弦长为,的平分线交于,则长为()A.7 B.7 C.8 D.95.如图所示的是太原市某公园“水上滑梯”的侧面图,其中段可看成是双曲线的一部分,其中,矩形中有一个向上攀爬的梯子,米,入口,且米,出口点距水面的距离为米,则点之间的水平距离的长度为()A.米 B.米 C.米 D.米6.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cosC的值为()A. B. C. D.7.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x,则可列方程是()A. B.C. D.8.如图所示为两把按不同比例尺进行刻度的直尺,每把直尺的刻度都是均匀的,已知两把直尺在刻度10处是对齐的,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,则上面直尺的刻度16与下面直尺对应的刻度是()A.19.4 B.19.5 C.19.6 D.19.79.平面直角坐标系内,已知线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,将线段AB扩大为原来的2倍后得到对应线段,则端点的坐标为()A.(4,4) B.(4,4)或(-4,-4) C.(6,2) D.(6,2)或(-6,-2)10.一元二次方程3x2=8x化成一般形式后,其中二次项系数和一次项系数分别是()A.3,8 B.3,0 C.3,-8 D.-3,-811.一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()A. B. C. D.12.若,相似比为1:2,则与的面积的比为()A.1:2 B.2:1 C.1:4 D.4:1二、填空题(每题4分,共24分)13.已知两个相似三角形的相似比为2︰5,其中较小的三角形面积是,那么另一个三角形的面积为.14.已知:∠BAC.(1)如图,在平面内任取一点O;(2)以点O为圆心,OA为半径作圆,交射线AB于点D,交射线AC于点E;(3)连接DE,过点O作线段DE的垂线交⊙O于点P;(4)连接AP,DP和PE.根据以上作图过程及所作图形,下列四个结论中:①△ADE是⊙O的内接三角形;②;③DE=2PE;④AP平分∠BAC.所有正确结论的序号是______________.15.将一副三角尺按如图所示的方式叠放在一起,边AC与BD相交于点E,则的值等于_________.16.在矩形中,,以点为圆心,为半径的圆弧交于点,交的延长线于点,连接,则图中阴影部分的面积为:__________.17.计算__________.18.如图,、是⊙上的两点,若,是⊙上不与点、重合的任一点,则的度数为__________.三、解答题(共78分)19.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.(1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)20.(8分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.21.(8分)如图,大圆的弦AB、AC分别切小圆于点M、N.(1)求证:AB=AC;(2)若AB=8,求圆环的面积.22.(10分)已知四边形为的内接四边形,直径与对角线相交于点,作于,与过点的直线相交于点,.(1)求证:为的切线;(2)若平分,求证:;(3)在(2)的条件下,为的中点,连接,若,的半径为,求的长.23.(10分)教练想从甲、乙两名运动员中选拔一人参加射击锦标赛,故先在射击队举行了一场选拔比赛.在相同的条件下各射靶次,每次射靶的成绩情况如图所示.甲射靶成绩的条形统计图乙射靶成绩的折线统计图()请你根据图中的数据填写下表:平均数众数方差甲__________乙____________________()根据选拔赛结果,教练选择了甲运动员参加射击锦标赛,请给出解释.24.(10分)某市为调查市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“:自行车,:电动车,:公交车,:家庭汽车,:其他”五个选项中选择最常用的一项.将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中,一共调查了名市民,其中“:公交车”选项的有人;扇形统计图中,项对应的扇形圆心角是度;(2)若甲、乙两人上班时从、、、四种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.25.(12分)如图所示,已知在平面直角坐标系中,抛物线(其中、为常数,且)与轴交于点,它的坐标是,与轴交于点,此抛物线顶点到轴的距离为4.(1)求抛物线的表达式;(2)求的正切值;(3)如果点是抛物线上的一点,且,试直接写出点的坐标.26.如图,是的直径,轴,交于点.(1)若点,求点的坐标;(2)若为线段的中点,求证:直线是的切线.

参考答案一、选择题(每题4分,共48分)1、C【解析】先根据表格中的数据大体画出抛物线的图象,进一步即可判断a、b、c的符号,进而可判断(1);由点(0,3)和(3,3)在抛物线上可求出抛物线的对称轴,然后结合抛物线的开口方向并利用二次函数的性质即可判断(2);由(2)的结论可知:当x=4和x=﹣1时对应的函数值相同,进而可判断(3);根据画出的抛物线的图象即可判断(4);由表中的数据可知:当x=3时,二次函数y=ax2+bx+c=3,进一步即可判断(5),从而可得答案.【详解】解:(1)画出抛物线的草图如图所示:则易得:a<0,b>0,c>0,∴abc<0,故(1)正确;(2)由表格可知:点(0,3)和(3,3)在抛物线上,且此两点关于抛物线的对称轴对称,∴抛物线的对称轴为直线x=,因为a<0,所以,当x>时,y的值随x值的增大而减小,故(2)错误;(3)∵抛物线的对称轴为直线x=,∴当x=4和x=﹣1时对应的函数值相同,∵当x=-1时,y<0,∴当x=4时,y<0,即16a+4b+c<0,故(3)正确;(4)由图象可知,抛物线与x轴有两个交点,与y轴有一个交点,故(4)错误;(5)由表中的数据可知:当x=3时,二次函数y=ax2+bx+c=3,∴x=3是方程ax2+(b﹣1)x+c=0的一个根,故(5)正确;综上,结论正确的共有3个,故选:C.【点睛】本题考查了抛物线的图象和性质以及抛物线与一元二次方程的关系,根据表格中的数据大体画出函数图象、熟练掌握二次函数的性质是解题的关键.2、D【解析】连接OA,过点O作OD⊥AB于点D,∵OD⊥AB,∴AD=12AB=12(9−1)=4cm,∵OA=5,则OD=5−DE,在Rt△OAD中,,即解得DE=2cm.故选D.3、D【分析】连接AD,根据想的垂直平分线的性质得到DA=DB,DB=DC,根据等腰三角形的性质计算即可.【详解】解:连接AD,∵点D为线段AB与线段BC的垂直平分线的交点,∴DA=DB,DB=DC,∴设∠DAC=x°,则∠DCA=x°,∠DAB=∠ABD=(35+x)°∠ADB=180°-2(35+x)°∴∠BDC+∠ADB+∠DAC+∠DCA=180°,∠BDC+180-2(35+x)+x+x=180∴∠BDC=70°故选:D.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4、B【解析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=7.【详解】作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB,∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,,∴DA=DB,∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易证△CDF≌△CDG,∴CF=CG,∵AC=6,BC=8,∴AF=1,∴CF=7,∵△CDF是等腰直角三角形,∴CD=7,故选B.【点睛】本题综合考查了圆周角的性质,圆心角、弧、弦的对等关系,全等三角形的判定,角平分线的性质等,综合性较强,有一定的难度,正确添加辅助线、熟练应用相关知识是解题的关键.5、D【分析】根据题意B、C所在的双曲线为反比例函数,B点的坐标已知为B(2,5),代入即可求出反比例函数的解析式:y=,C(x,1)代入y=中,求出C点横坐标为10,可以得出DE=OD-OE即可求出答案.【详解】解:设B、C所在的反比例函数为y=B(xB,yB)∴xB=OE=AB=2yB=EB=OA=5代入反比例函数式中5=得到k=10∴y=∵C(xC,yC)yC=CD=1代入y=中∴1=xC=10∴DE=OD-OE=xC-xB=10-2=8故选D【点睛】此题主要考查了反比例函数的定义,根据已知参数求出反比例函数解析式是解题的关键.6、A【解析】∵∠A=90°,AC=5,AB=12,∴BC==13,∴cosC=,故选A.7、B【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x,依题意得:故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键.8、C【分析】根据两把直尺在刻度10处是对齐的及上面直尺的刻度11与下面直尺对应的刻度是11.6,得出上面直尺的10个小刻度,对应下面直尺的16个小刻度,进而判断出上面直尺的刻度16与下面直尺对应的刻度即可.【详解】解:由于两把直尺在刻度10处是对齐的,观察图可知上面直尺的刻度11与下面直尺对应的刻度是11.6,即上面直尺的10个小刻度,对应下面直尺的16个小刻度,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,因此上面直尺的刻度16与下面直尺对应的刻度是18+1.6=19.6,故答案为C【点睛】本题考查了学生对图形的观察能力,通过图形得出上面直尺的10个小刻度,对应下面直尺的16个小刻度是解题的关键.9、B【分析】根据位似图形的性质只要点的横、纵坐标分别乘以2或﹣2即得答案.【详解】解:∵原点O为位似中心,将线段AB扩大为原来的2倍后得到对应线段,且A(2,2)、B(3,1),∴点的坐标为(4,4)或(﹣4,﹣4).故选:B.【点睛】本题考查了位似图形的性质,属于基础题型,正确分类、掌握求解的方法是解题关键.10、C【分析】要确定二次项系数,一次项系数,常数项,首先要把方程化成一般形式.【详解】解:∴二次项系数是,一次项系数是.故选:C【点睛】本题考查了一元二次方程的一般形式:(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.11、B【解析】根据题中给出的函数图像结合一次函数性质得出a<0,b>0,再由反比例函数图像性质得出c<0,从而可判断二次函数图像开口向下,对称轴:>0,即在y轴的右边,与y轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b图像过一、二、四,∴a<0,b>0,又∵反比例函数y=图像经过二、四象限,∴c<0,∴二次函数对称轴:>0,∴二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.12、C【解析】试题分析:直接根据相似三角形面积比等于相似比平方的性质.得出结论:∵,相似比为1:2,∴与的面积的比为1:4.故选C.考点:相似三角形的性质.二、填空题(每题4分,共24分)13、25【解析】试题解析:∵两个相似三角形的相似比为2:5,∴面积的比是4:25,∵小三角形的面积为4,∴大三角形的面积为25.故答案为25.点睛:相似三角形的面积比等于相似比的平方.14、①④【分析】①按照圆的内接三角形的定义判断即可,三顶点都在一个圆周上的三角形,叫做这个圆周的内接三角形;②利用垂径定理得到弧长之间的关系即可;③设OP与DE交于点M,利用垂径定理可得DE⊥OP,DE=2ME,再利用直角三角形中斜边长大于直角边,找到PE与与ME的关系,进一步可以得到DE与PE的关系;④根据,即可得到∠DAP=∠PAE,则AP平分∠BAC.【详解】解:①点A、D、E三点均在⊙O上,所以△ADE是⊙O的内接三角形,此项正确;②∵DE⊥DE交⊙O于点P∴并不能证明与、关系,∴不正确;③设OP与DE交于点M∵DE⊥DE交⊙O于点P∴DE⊥OP,ME=DE(垂径定理)∴△PME是直角三角形∴ME<PE∴<PE∴DE<2PE故此项错误.④∵(已证)∴∠DAP=∠PAE(同弧所对的圆周角相等)∴AP平分∠BAC.故此项正确.故正确的序号为:①④【点睛】本题考查了圆中内接三角形定义、垂径定理与圆周角定理的应用,熟练掌握定理是解决此题的关键.15、【分析】如图(见解析),先根据等腰直角三角形的判定与性质可得,设,从而可得,再在中,利用直角三角形的性质、勾股定理可得,由此即可得出答案.【详解】如图,过点E作于点F,由题意得:,,是等腰直角三角形,,设,则,在中,,,,解得,则,故答案为:.【点睛】本题考查了等腰直角三角形的判定与性质、直角三角形的性质、勾股定理等知识点,通过作辅助线,构造两个直角三角形是解题关键.16、【分析】首先利用三角函数求的∠DAE的度数,然后根据S阴影=S扇形AEF−S△ADE即可求解.【详解】解:∵,AE=AB,

∴AD=2,DE==2,

∴Rt△ADE中,cos∠DAE==,

∴∠DAE=60°,

则S△ADE=AD⋅DE=×2×2=2,S扇形AEF==,

则S阴影=S扇形AEF−S△ADE=-2.

故答案为.【点睛】本题考查了扇形的面积公式和三角函数,求的∠DAE的度数是关键.17、【分析】先把特殊角的三角函数值代入原式,再计算即得答案.【详解】解:原式=.故答案为:.【点睛】本题考查了特殊角的三角函数值,属于基础题型,熟记特殊角的三角函数值、正确计算是关键.18、或【分析】根据题意,可分为两种情况:点C正在优弧和点C在劣弧,分别求出答案即可.【详解】解:当点C在优弧上,则∵,∴;当点C在劣弧上时,则∵,∴,∴;∴的度数为:40°或140°;故答案为:40°或140°.【点睛】本题考查了圆周角定理,解题的关键是掌握同弧所对的圆周角等于圆心角的一半,注意分类讨论进行解题.三、解答题(共78分)19、(1)袋子中白球有2个;(2)见解析,.【解析】(1)首先设袋子中白球有x个,利用概率公式求即可得方程:,解此方程即可求得答案;

(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【详解】解:(1)设袋子中白球有x个,根据题意得:,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:.【点睛】此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比.20、(1)15人;(2)补图见解析.(3).【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=.【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.21、(1)证明见解析;(2)S圆环=16π【解析】试题分析:(1)连结OM、ON、OA由切线长定理可得AM=AN,由垂径定理可得AM=BM,AN=NC,从而可得AB=AC.(2)由垂径定理可得AM=BM=4,由勾股定理得OA2-OM2=AM2=16,代入圆环的面积公式求解即可.(1)证明:连结OM、ON、OA∵AB、AC分别切小圆于点M、N.∴AM=AN,OM⊥AB,ON⊥AC,∴AM=BM,AN=NC,∴AB=AC(2)解:∵弦AB切与小圆⊙O相切于点M∴OM⊥AB∴AM=BM=4∴在Rt△AOM中,OA2-OM2=AM2=16∴S圆环=πOA2-πOM2=πAM2=16π22、(1)证明见解析(2)证明见解析(3)【分析】(1)根据直径所对的圆周角为90°,得到∠ADC=90°,根据直角三角形两锐角互余得到∠DAC+∠DCA=90°,再根据同弧或等弧所对的圆周角相等,可得到∠FAD+∠DAC=90°,即可得出结论;(2)连接OD.根据圆周角定理和角平分线定义可得∠DOA=∠DOC,即可得出结论;(3)连接OD交CF于M,作EP⊥AD于P.可求出AD=4,AF∥OM.根据三角形中位线定理得出OM=AF.证明△ODE≌△OCM,得到OE=OM.设OM=m,用m表示出OE,AE,AP,DP.通过证明△EAN∽△DPE,根据相似三角形对应边成比例,求出m的值,从而求得AN,AE的值.在Rt△NAE中,由勾股定理即可得出结论.【详解】(1)∵AC为⊙O的直径,∴∠ADC=90°,∴∠DAC+∠DCA=90°.∵,∴∠ABD=∠DCA.∵∠FAD=∠ABD,∴∠FAD=∠DCA,∴∠FAD+∠DAC=90°,∴CA⊥AF,∴AF为⊙O的切线.(2)连接OD.∵,∴∠ABD=∠AOD.∵,∴∠DBC=∠DOC.∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠DOA=∠DOC,∴DA=DC.(3)连接OD交CF于M,作EP⊥AD于P.∵AC为⊙O的直径,∴∠ADC=90°.∵DA=DC,∴DO⊥AC,∴∠FAC=∠DOC=90°,AD=DC==4,∴∠DAC=∠DCA=45°,AF∥OM.∵AO=OC,∴OM=AF.∵∠ODE+∠DEO=90°,∠OCM+∠DEO=90°,∴∠ODE=∠OCM.∵∠DOE=∠COM,OD=OC,∴△ODE≌△OCM,∴OE=OM.设OM=m,∴OE=m,,,∴.∵∠AED+∠AEN=135°,∠AED+∠ADE=135°,∴∠AEN=∠ADE.∵∠EAN=∠DPE,∴△EAN∽△DPE,∴,∴,∴,∴,,由勾股定理得:.【点睛】本题是圆的综合题.考查了圆周角定理,切线的判定,相似三角形的判定与性质,三角形的中位线定理等知识.用含m的代数式表示出相关线段的长是解答本题的关键.23、(1)【答题空1】66(2)利用见解析.【分析】(1)先求出甲射击成绩的平均数,通过观察可得到乙的众数,再根据乙的平均数结合方差公式求出乙射击成绩的方差即可;(2)根据平均数和方差的意义,即可得出结果.【详解】解:(),乙的众数为6,.()因为甲、乙的平均数与众数都相同,甲的方差小,所以更稳定,因此甲的成绩好些.【点睛】本题考查了平均数、众数、方差的意义等,解题的关键是要熟记公式,在进行选拔时要结合方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.24、(1)、800、;(2)【分析】(1)由选项D的人数及其所占的百分比可得调查的人数,总调查人数减去A、B、D、E选项的人数即为C选项的人数,求出B选项占总调查人数的百分比再乘以360度即为项对应的扇形圆心角度数;(2)用列表法列出所有可能出现的情况,再根据概率公式求解即可.【详解】解:(1)本次调查的总人数为人;选项的人数为人;扇形统计图中,项对应的扇形圆心角是;(2)列表如下:由表可知共有种等可能结果,其中甲、乙两人恰好选择同一种交通工具上班的结果有种,所以甲、乙两人恰好选择同一种交通工具上班的概率为.【点睛】本题考查了样本估计总体及列表法或树状图法求概率,是数据与概率的综合题,灵活的将条形统计图与扇形统计图中的数据相关联是解(1)的关键,熟练的用列表或树状图列出所有可能情况是求概率的关键.25、(1);(2);(2)点的坐标是或【分析】(1)先求得抛物线的对称轴方程,然后再求得点C的坐标,设抛物线的解析式为y=a(x+1)2+4,将点(-2,0)代入求得a的值即可;

(2)先求得A、B、C的坐标,然后依据两点间的距离公式可得到BC、AB、AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;

(2)记抛物线与x轴的另一个交点为D.先求得D(1,0),然后再证明∠DBO=∠CAB,从而可证明∠CAO=ABD,故此当点P与点D重合时,∠ABP=∠CAO;当点P在AB的上时.过点P作PE∥AO,过点B作BF∥AO,则PE∥BF.先证明∠EPB=∠CAB,则tan∠EPB=,设BE=t,则PE=2t,P(-2t,2+t),将P(-2t,2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论