版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省广水市数学九年级第一学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.12.下列方程式属于一元二次方程的是()A. B. C. D.3.在中,=90〫,,则的值是()A. B. C. D.4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A. B. C. D.5.在中,,垂足为D,则下列比值中不等于的是()A. B. C. D.6.下列图形的主视图与左视图不相同的是()A. B. C. D.7.下列计算正确的是()A.3x﹣2x=1 B.x2+x5=x7C.x2•x4=x6 D.(xy)4=xy48.如图,BC是⊙O的直径,点A、D在⊙O上,若∠ADC=48°,则∠ACB等于()度.A.42 B.48 C.46 D.509.方程的根为()A. B. C.或 D.或10.有x支球队参加篮球比赛,每两队之间都比赛一场,共比赛了21场,则下列方程中符合题意的是()A.x(x﹣1)=21 B.x(x﹣1)=42C.x(x+1)=21 D.x(x+1)=42二、填空题(每小题3分,共24分)11.一个三角形的两边长为2和9,第三边长是方程x2-14x+48=0的一个根,则三角形的周长为____.12.在平面直角坐标系中,已知点,以原点为位似中心,相似比为.把缩小,则点的对应点的坐标分别是_____,_____.13.已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于_____.14.如图,直线分别交轴,轴于点A和点B,点C是反比例函数的图象上位于直线下方的一点,CD∥轴交AB于点D,CE∥轴交AB于点E,,则的值为______15.二次函数y=x2-2x+1的对称轴方程是x=_______.16.若关于的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_____________.17.已知两个二次函数的图像如图所示,那么a1________a2(填“>”、“=”或“<”).18.二次函数的顶点坐标是___________.三、解答题(共66分)19.(10分)在平面直角坐标系中的位置如图所示.在图中画出关于轴对称的图形,并写出顶点的坐标;将向下平移个单位长度,再向左平移个单位长度得到,画出平移后的,并写出顶点的坐标.20.(6分)如图,在直角三角形△ABC中,∠BAC=90°,点E是斜边BC的中点,圆O经过A、C、E三点,F是弧EC上的一个点,且∠AFC=36°,则∠B=______.21.(6分)如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求的值.22.(8分)中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调查结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调查中.共调查了______名中学生家长;(2)将图形①、②补充完整;(3)根据抽样调查结果.请你估计我市城区80000名中学生家长中有多少名家长持反对态度?23.(8分)(1)计算:4sin260°+tan45°-8cos230°(2)在Rt△ABC中,∠C=90°.若∠A=30°,b=5,求a、c.24.(8分)如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的面积.(结果保留π)25.(10分)解方程(1)(x+1)2﹣25=0(2)x2﹣4x﹣2=026.(10分)如图,在矩形ABCD中,AB=6cm,BC=8cm.点P从点B出发沿边BC向点C以2cm/s的速度移动,点Q从C点出发沿CD边向点B以1cm/s的速度移动.如果P、Q同时出发,几秒钟后,可使△PCQ的面积为五边形ABPQD面积的?
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=1.
故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.2、D【解析】根据一元二次方程的定义逐项进行判断即可.【详解】A、是一元三次方程,故不符合题意;B、是分式方程,故不符合题意;C、是二元二次方程,故不符合题意;D、是一元二次方程,符合题意.故选:D.【点睛】本题考查一元二次方程的定义,熟练掌握定义是关键.3、A【分析】根据同角三角函数关系:+求解.【详解】解:在Rt△ABC中,∠C=90°,,∵+,∴,∴=故选:A【点睛】本题考查了同角三角函数的关系的应用,能知道是解题的关键.4、A【解析】直接得出2的个数,再利用概率公式求出答案.【解答】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是2的概率为:故选A.【点评】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.5、D【分析】利用锐角三角函数定义判断即可.【详解】在Rt△ABC中,sinA=,在Rt△ACD中,sinA=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sinA=sin∠BCD=,故选:D.【点睛】此题考查了锐角三角函数的定义,熟练掌握锐角三角函数定义是解本题的关键.6、D【解析】确定各个选项的主视图和左视图,即可解决问题.【详解】A选项,主视图:圆;左视图:圆;不符合题意;B选项,主视图:矩形;左视图:矩形;不符合题意;C选项,主视图:三角形;左视图:三角形;不符合题意;D选项,主视图:矩形;左视图:三角形;符合题意;故选D【点睛】本题考查几何体的三视图,难度低,熟练掌握各个几何体的三视图是解题关键.7、C【分析】分别根据合并同类项的法则,同底数幂的乘法法则,幂的乘方与积的乘方逐一判断即可.【详解】解:3x﹣2x=x,故选项A不合题意;x2与x5不是同类项,故不能合并,故选项B不合题意;x2•x4=x6,正确,故选项C符合题意;,故选项D不合题意.故选:C.【点睛】本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,熟练掌握运算法则是解答本题的关键.8、A【分析】连接AB,由圆周角定理得出∠BAC=90°,∠B=∠ADC=48°,再由直角三角形的性质即可得出答案.【详解】解:连接AB,如图所示:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠ADC=48°,∴∠ACB=90°-∠B=42°;故选:A.【点睛】本题考查了圆周角定理以及直角三角形的性质;熟练掌握圆周角定理是解题的关键.9、D【分析】用直接开平方法解方程即可.【详解】x-1=±1x1=2,x2=0故选:D【点睛】本题考查的是用直接开平方法解一元二次方程,关键是要掌握开平方的方法,解题时要注意符号.10、B【分析】设这次有x队参加比赛,由于赛制为单循环形式(每两队之间都赛一场),则此次比赛的总场数为:x(x-1)场.根据题意可知:此次比赛的总场数=21场,依此等量关系列出方程即可.【详解】设这次有x队参加比赛,则此次比赛的总场数为x(x−1)场,根据题意列出方程得:x(x−1)=21,整理,得:x(x−1)=42,故答案为x(x−1)=42.故选B.【点睛】本题考查由实际问题抽象出一元二次方程,准确找到等量关系是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】先求得方程的两根,根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解方程x2-14x+48=0得第三边的边长为6或8,依据三角形三边关系,不难判定边长2,6,9不能构成三角形,2,8,9能构成三角形,∴三角形的周长=2+8+9=1.【点睛】本题考查三角形的周长和解一元二次方程,解题的关键是检验三边长能否成三角形.12、(-1,2)或(1,-2);(-3,-1)或(3,1)【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或−k,分别把A,B点的横纵坐标分别乘以或−即可得到点B′的坐标.【详解】∵以原点O为位似中心,相似比为,把△ABO缩小,∴的对应点A′的坐标是(-1,2)或(1,-2),点B(−9,−3)的对应点B′的坐标是(−3,−1)或(3,1),故答案为:(-1,2)或(1,-2);(-3,-1)或(3,1).【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.13、15或10【分析】作AD⊥BC交BC(或BC延长线)于点D,分AB、AC位于AD异侧和同侧两种情况,先在Rt△ABD中求得AD、BD的值,再在Rt△ACD中利用勾股定理求得CD的长,继而就两种情况分别求出BC的长,根据三角形的面积公式求解可得.【详解】解:作AD⊥BC交BC(或BC延长线)于点D,①如图1,当AB、AC位于AD异侧时,在Rt△ABD中,∵∠B=30°,AB=10,∴AD=ABsinB=5,BD=ABcosB=5,在Rt△ACD中,∵AC=2,∴CD=,则BC=BD+CD=6,∴S△ABC=•BC•AD=×6×5=15;②如图2,当AB、AC在AD的同侧时,由①知,BD=5,CD=,则BC=BD-CD=4,∴S△ABC=•BC•AD=×4×5=10.综上,△ABC的面积是15或10,故答案为15或10.【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握三角函数的运用、分类讨论思想的运算及勾股定理.14、【分析】过作于,过作于,由CD∥轴,CE∥轴,得利用三角形相似的性质求解建立方程求解,结合的几何意义可得答案.【详解】.解:过作于,过作于,CD∥轴,CE∥轴,直线分别交轴,轴于点A和点B,点,把代入得:同理:把代入得:,同理:故答案为;.【点睛】本题考查的是反比例函数的系数的几何意义,同时考查了一次函数的性质,勾股定理的应用,相似三角形的判定与性质,掌握以上知识是解题的关键.15、1【分析】利用公式法可求二次函数y=x2-2x+1的对称轴.也可用配方法.【详解】∵-=-=1,∴x=1.故答案为1【点睛】本题考查二次函数基本性质中的对称轴公式;也可用配方法解决.16、且【解析】试题解析:∵一元二次方程有两个不相等的实数根,∴m−1≠0且△=16−4(m−1)>0,解得m<5且m≠1,∴m的取值范围为m<5且m≠1.故答案为:m<5且m≠1.点睛:一元二次方程方程有两个不相等的实数根时:17、【分析】直接利用二次函数的图象开口大小与a的关系进而得出答案.【详解】解:如图所示:的开口小于的开口,则a1>a2,故答案为:>.【点睛】此题主要考查了二次函数的图象,正确记忆开口大小与a的关系是解题关键.18、【分析】因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),直接求二次函数的顶点坐标即可.【详解】∵是顶点式,∴顶点坐标是.故答案为:【点睛】本题考查了二次函数的性质,熟练掌握顶点式是解题的关键.三、解答题(共66分)19、(1)作图见解析,;(2)作图见解析,【分析】(1)先根据点的对称性,画出三点的位置,再顺次连接即可得;最后根据三点在网格中的位置可得它们的坐标;(2)根据点坐标的平移,先画出三点的位置,再顺次连接即可得;最后根据三点在网格中的位置可得它们的坐标.【详解】(1)先画出三点的位置,再顺次连接即可得,作图结果如图所示:观察图形可知:顶点的坐标分别为;(2)先画出三点的位置,再顺次连接即可得,作图结果如图所示:观察图形可知:顶点的坐标为,即.【点睛】本题考查了点的对称性与平移,读懂题意,掌握在平面直角坐标系中作图的方法是解题关键.20、18°【分析】连接,根据圆周角定理可得出的度数,再由直角三角形的性质得,根据三角形外角的性质即可得出结论.【详解】解:连接,点是斜边的中点是的外角故答案为:.【点睛】本题考查的是圆周角定理,根据题意作辅助线,构造出圆周角是解答此题的关键.21、(1)k=2,B(-1,-2);(2)2【分析】(1)先利用正比例函数解析式确定,再把点坐标代入中求出得到反比例函数解析式为,然后解方程组得点坐标;(2)作于,如图,利用等角的余角相等得到,然后在中利用正切的定义求出的值,即=的值.【详解】解:(1)把代入得,则,把代入得,反比例函数解析式为,解方程组得或,点坐标为;(2)作于,如图,∠ABC=90°,,,,,在中,,即,∵∠ABC=90°,∴=.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22、(1)200;(2)详见解析;(3)48000【分析】(1)用无所谓的人数除以其所占的百分比即可得到调查的总数;(2)总数减去A、B两种态度的人数即可得到C态度的人数;(3)用家长总数乘以持反对态度的百分比即可.【详解】解:(1)调查家长总数为:50÷25%=200人;故答案为:200.
(2)持赞成态度的学生家长有200-50-120=30人,B所占的百分比为:;C所占的百分比为:;
故统计图为:
(3)持反对态度的家长有:80000×60%=48000人.【点睛】本题考查了用样本估计总体和扇形统计图的知识,解题的关键是从两种统计图中整理出有关信息.23、(1)2;(2)a=5,c=1【分析】(1)分别把各特殊角的三角函数值代入,再根据二次根式混合运算的法则进行计算即可;(2)由直角三角形的性质可得c=2a,由勾股定理可求解.【详解】(1)原式=4×()2+1﹣8×()2=3+1﹣6=﹣2;(2)∵∠C=90°,∠A=30°,∴c=2a.∵a2+b2=c2,∴,∴3a2=75,∴a=5(负数舍去),∴c=1.【点睛】本题考查了直角三角形的性质,勾股定理,特殊角的三角函数值,熟记各特殊角度的三角函数值是解答本题的关键.24、(1)见解析;(2)169π(cm2).【分析】(1)根据垂径定理,即可得=,根据同弧所对的圆周角相等,证出∠BAC=∠BCD,再根据等边对等角,即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乡村别墅地产租赁合约三篇
- 2024年标准担保公司过桥贷款服务协议范本版B版
- 2024年度知识产权专利布局与预警服务合同3篇
- 大学体育运动会开幕致辞
- 工艺品销售工作总结
- 语文高考押题专题四:诗歌鉴赏
- 汕头语文二模试题
- 物流成本课程设计
- 游泳馆教练教学课程设计
- 描写七夕节风俗随笔
- 终极战略规划指南:深度剖析Cross SWOT分析、市场洞察与内部能力优化的综合行动方案
- 中国偏头痛诊治指南(第一版)2023解读
- 湖北省武汉市黄陂区2024年数学六年级第一学期期末学业质量监测模拟试题含解析
- 关于开展2024年度保密自查自评专项检查工作的实施方案
- 商场反恐防暴应急预案演练方案
- 2024年天津市西青经济开发集团限公司公开招聘工作人员高频500题难、易错点模拟试题附带答案详解
- 数据库设计规范标准
- 2023年全国职业院校技能大赛赛项-ZZ019 智能财税基本技能赛题 - 模块三-答案
- 一例护理不良事件分析(手术室异物遗留预防)
- 先天性甲状腺功能减低症专家讲座
- 学校合作档口合同协议
评论
0/150
提交评论