版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届海口市重点中学数学九年级第一学期期末达标测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知函数的部分图像如图所示,若,则的取值范围是()A. B. C. D.2.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=483.下列四组、、的线段中,不能组成直角三角形的是()A.,, B.,,C.,, D.,,4.已知反比例函数的解析式为,则的取值范围是A. B. C. D.5.如图,点A,B,C都在⊙O上,∠ABC=70°,则∠AOC的度数是()A.35° B.70° C.110° D.140°6.若关于的一元二次方程有两个实数根则的取值范围是()A. B.且 C.且 D.7.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B. C. D.8.已知一元二次方程,,则的值为()A. B. C. D.9.已知正比例函数的函数值随自变量的增大而增大,则二次函数的图象与轴的交点个数为()A.2 B.1 C.0 D.无法确定10.下列事件属于随机事件的是()A.抛出的篮球会下落B.两枚骰子向上一面的点数之和大于1C.买彩票中奖D.口袋中只装有10个白球,从中摸出一个黑球二、填空题(每小题3分,共24分)11.用一个圆心角90°,半径为8㎝的扇形纸围成一个圆锥,则该圆锥底面圆的半径为.12.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是和,则动力(单位:)关于动力臂(单位:)的函数解析式为______.13.如图,已知是直角,在射线上取一点为圆心、为半径画圆,射线绕点顺时针旋转__________度时与圆第一次相切.14.在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的有______名同学.15.已知,则=____16.如图,在与中,,要使与相似,还需添加一个条件,这个条件可以是____________(只需填一个条件)17.已知tan(α+15°)=,则锐角α的度数为______°.18.如图是拦水坝的横断面,斜坡的高度为米,斜面的坡比为,则斜坡的长为________米.(保留根号)三、解答题(共66分)19.(10分)新能源汽车已逐渐成为人们的交通工具,据某市某品牌新能源汽车经销商1至3月份统计,该品牌新能源汽车1月份销售150辆,3月份销售216辆.(1)求该品牌新能源汽车销售量的月均增长率;(2)若该品牌新能源汽车的进价为6.3万元/辆,售价为6.8万元/辆,则该经销商1至3月份共盈利多少万元?20.(6分)如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.21.(6分)如图,是的直径,点在上,垂直于过点的切线,垂足为.(1)若,求的度数;(2)如果,,则.22.(8分)如图,已知二次函数的图象经过点.(1)求的值和图象的顶点坐标。(2)点在该二次函数图象上.①当时,求的值;②若到轴的距离小于2,请根据图象直接写出的取值范围.23.(8分)中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.24.(8分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P为边BC上一个动点(可以包括点C但不包括点B),以P为圆心PB为半径作⊙P交AB于点D过点D作⊙P的切线交边AC于点E,(1)求证:AE=DE;(2)若PB=2,求AE的长;(3)在P点的运动过程中,请直接写出线段AE长度的取值范围.25.(10分)已知:如图,在中,D是AC上一点,联结BD,且∠ABD=∠ACB.(1)求证:△ABD∽△ACB;(2)若AD=5,AB=7,求AC的长.26.(10分)先化简,再求值:已知,,求的值.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据抛物线的对称性确定抛物线与x轴的另一个交点为(−3,1),然后观察函数图象,找出抛物线在x轴上方的部分所对应的自变量的范围即可.【详解】∵y=ax2+bx+c的对称轴为直线x=−1,与x轴的一个交点为(1,1),∴抛物线与x轴的另一个交点为(−3,1),∴当−3<x<1时,y>1.故选:C.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x轴的交点.2、D【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设教育经费的年平均增长率为x,然后根据已知条件可得出方程.【详解】∵某超市一月份的营业额为36万元,每月的平均增长率为x,∴二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2.∴根据三月份的营业额为48万元,可列方程为36(1+x)2=48.故选D.【点睛】本题考查了一元二次方程的应用,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.3、B【分析】根据勾股定理的逆定理判断三角形三边是否构成直角三角形,依次计算判断得出结论.【详解】A.∵,,∴,A选项不符合题意.B.∵,,∴,B选项符合题意.C.∵,,∴,C选项不符合题意.D.∵,∴,D选项不符合题意.故选:B.【点睛】本题考查三角形三边能否构成直角三角形,熟练逆用勾股定理是解题关键.4、C【分析】根据反比例函数的定义可得|a|-2≠0,可解得.【详解】根据反比例函数的定义可得|a|-2≠0,可解得a≠±2.故选C.【点睛】本题考核知识点:反比例函数定义.解题关键点:理解反比例函数定义.5、D【分析】根据圆周角定理问题可解.【详解】解:∵∠ABC所对的弧是,
∠AOC所对的弧是,
∴∠AOC=2∠ABC=2×70°=140°.
故选D.【点睛】本题考查圆周角定理,解答关键是掌握圆周角和同弧所对的圆心角的数量关系.6、C【分析】由二次项系数非零结合根的判别式△,即可得出关于的一元一次不等式组,解之即可得出结论.【详解】解:关于的一元二次方程有两个不相等的实数根,,解得:且.故选:C.【点睛】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零结合根的判别式△,列出关于的一元一次不等式组是解题的关键.7、B【分析】连接OD,得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的长;由BD平分∠ABC,OB=OD可得OD与BC间的位置关系,根据平行线分线段成比例定理,得结论.【详解】连接OD∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,∴OD⊥AC在Rt△AOD中,∵∠A=30°,AD=2,∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD∥CB,∴,即,∴CD=.故选B.【点睛】本题考查了圆的切线的性质、含30°角的直角三角形的性质及平行线分线段成比例定理,解决本题亦可说明∠C=90°,利用∠A=30°,AB=6,先得AC的长,再求CD.遇切点连圆心得直角,是通常添加的辅助线.8、B【分析】根据题干可以明确得到p,q是方程的两根,再利用韦达定理即可求解.【详解】解:由题可知p,q是方程的两根,∴p+q=,故选B.【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.9、A【分析】根据正比例函数的性质可以判断k的正负情况,然后根据△的正负,即可判断二次函数的图象与轴的交点个数,本题得以解决.【详解】∵正比例函数的函数值随自变量的增大而增大,∴k>0,∵二次函数为∴△=[−2(k+1)]2−4×1×(k2−1)=8k+8>0,∴二次函数为与轴的交点个数为2,故选:A.【点睛】本题考查二次函数与x轴的交点个数和正比例函数的性质,解答本题的关键是明确题意,利用根的判别式来解答.10、C【解析】根据随机事件,必然事件,不可能事件概念解题即可.【详解】解:A.抛出的篮球会下落,是必然事件,所以错误,B.两枚骰子向上一面的点数之和大于1,是不可能事件,所以错误,C.买彩票中奖.是随机事件,正确,D.口袋中只装有10个白球,从中摸出一个黑球,,是不可能事件,所以错误,故选C.【点睛】本题考查了随机事件的概念,属于简单题,熟悉概念是解题关键.二、填空题(每小题3分,共24分)11、1.【解析】试题分析:扇形的弧长是:,设底面半径是,则,解得.故答案是:1.考点:圆锥的计算.12、【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.【详解】∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,则.故答案为:.【点睛】此题主要考查了反比例函数的应用,正确读懂题意得出关系式是解题关键.13、60【分析】根据题意,画出旋转过程中,与圆相切时的切线BA1,切点为D,连接OD,根据切线的性质可得∠ODB=90°,然后根据已知条件,即可得出∠OBD=30°,从而求出旋转角∠ABA1.【详解】解:如下图所示,射线BA1为射线与圆第一次相切时的切线,切点为D,连接OD∴∠ODB=90°根据题意可知:∴∠OBD=30°∴旋转角:∠ABA1=∠ABC-∠OBD=60°故答案为:60【点睛】此题考查的是切线的性质和旋转角,掌握切线的性质是解决此题的关键.14、1【解析】设参加聚会的有x名学生,根据“在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送10份小礼品”,列出关于x的一元二次方程,解之即可.【详解】解:设参加聚会的有x名学生,根据题意得:,解得:,舍去,即参加聚会的有1名同学,故答案为:1.【点睛】本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.15、1【分析】由,得a=3b,进而即可求解.【详解】∵,∴a=3b,∴;故答案为:1.【点睛】本题主要考查比例式的性质,掌握比例式的内项之积等于外项之积,是解题的关键.16、∠B=∠E【分析】根据两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似可得添加条件:∠B=∠E.【详解】添加条件:∠B=∠E;
∵,∠B=∠E,
∴△ABC∽△AED,
故答案为:∠B=∠E(答案不唯一).【点睛】此题考查相似三角形的判定,解题关键是掌握相似三角形的判定定理.17、15【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.18、【分析】由题意可知斜面坡度为1:2,BC=6m,由此求得AC=12m,再由勾股定理求得AB的长即可.【详解】由题意可知:斜面坡度为1:2,BC=6m,∴AC=12m,由勾股定理可得,AB=m.故答案为6m.【点睛】本题考查了解直角三角形的应用,根据坡度构造直角三角形是解决问题的关键.三、解答题(共66分)19、(1)品牌新能源汽车月均增长率为20%;(2)经销商1至3月份共盈利273万元.【分析】(1)设新能源汽车销售量的月均增长率为,根据3月份销售216辆列方程,再解方程即可得到答案;(2)利用1至3月份的总销量乘以每辆车的盈利,即可得到答案.【详解】解:(1)设新能源汽车销售量的月均增长率为,根据题意得150(1+)2=216(1+)2=1.44解得:,(不合题意、舍去)0.2=20%答:该品牌新能源汽车月均增长率为20%(2)2月份销售新能源汽车150×(1+20%)=180辆(150+180+216)×(6.8-6.3)=273答:该经销商1至3月份共盈利273万元.【点睛】本题考查的是一元二次方程的应用,掌握利用一元二次方程解决增长率问题是解题的关键.20、(1);(2)①菱形,理由见解析;②AM=,MN=;(3)1.【分析】(1)利用相似三角形的性质求解即可.(2)①根据邻边相等的平行四边形是菱形证明即可.②连接AA′交MN于O.设AM=MA′=x,由MA′∥AB,可得=,由此构建方程求出x,解直角三角形求出OM即可解决问题.(3)如图3中,作NH⊥BC于H.想办法求出NH,CM,利用相似三角形,确定比例关系,构建方程解决问题即可.【详解】解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴=,∵AN=AC∴=,∴AM=.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠MNA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,∴∠MNA′=∠A′MN,∴A′N=A′M,∴AM=A′N,∵AM∥A′N,∴四边形AMA′N是平行四边形,∵MA=MA′,∴四边形AMA′N是菱形.②连接AA′交MN于O.设AM=MA′=x,∵MA′∥AB,∴∴=,∴=,解得x=,∴AM=∴CM=,∴CA′===,∴AA′===,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=,∴OM===,∴MN=2OM=.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴△ABC∽△NBH∴==∴==∴NH=,BH=,∴CH=BC﹣BH=3﹣=,∴AM=AC=,∴CM=AC﹣AM=4﹣=,∵CM∥NH,∴△CPM∽△HPN∴=,∴=,∴PC=1.【点睛】本题考查了相似三角形的综合应用,涉及相似三角形的判定与性质、菱形的判定、勾股定理等知识点,综合性较强,难度较大,解题的关键是综合运用上述知识点.21、(1)40°;(2)【分析】(1)通过添加辅助线,连接OC,证得,再通过,证得,利用等量代换可得,即可得到答案;(2)通过添加辅助线BC,证△ADC∽△ACB,再利用相似的性质得,代入数值即可得到答案.【详解】解:(1)如图连结,∵CD为过点C的切线∴又∵∴∴;又∴,∴∵∴(2)如图连接BC∵AB是直径,点C是圆上的点∴∠ACB=90°∵AD⊥CD∴∠ADC=∠ACB=90°又∵∴△ADC∽△ACB∴∵,∴则【点睛】本题考查的是圆的相关性质与形似相结合的综合性题目,能够掌握圆的相关性质是解答此题的关键.22、(1);(2)①11;②.【解析】(1)把点P(-2,3)代入y=x2+ax+3中,即可求出a;(2)①把m=2代入解析式即可求n的值;②由点Q到y轴的距离小于2,可得-2<m<2,在此范围内求n即可.【详解】(1)解:把代入,得,解得.∵,∴顶点坐标为.(2)①当m=2时,n=11,②点Q到y轴的距离小于2,∴|m|<2,∴-2<m<2,∴2≤n<11.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征是解题的关键.23、(1);(2)【分析】(1)根据小聪选择的数学名著有四种可能,而他选中《九章算术》只有一种情况,再根据概率公式解答即可;(2)此题需要两步完成,所以可采用树状图法或者采用列表法求解.【详解】解:(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为.故答案为;(2)将四部名著《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A,B,C,D,记恰好选中《九章算术》和《孙子算经》为事件M.方法一:用列表法列举出从4部名著中选择2部所能产生的全部结果:第1部第2部ABCDABACADABABCBDBCACBCDCDADBDCD由表中可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即DB,BD,∴P(M)=.方法二:根据题意可以画出如下的树状图:由树状图可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即BD,DB,∴P(M)=.故答案为:.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24、(1)详见解析;(3)AE=;(3)≤AE<.【解析】(1)首先得出∠ADE+∠PDB=90°,进而得出∠B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乡村别墅地产租赁合约三篇
- 2024年标准担保公司过桥贷款服务协议范本版B版
- 2024年度知识产权专利布局与预警服务合同3篇
- 大学体育运动会开幕致辞
- 工艺品销售工作总结
- 语文高考押题专题四:诗歌鉴赏
- 汕头语文二模试题
- 物流成本课程设计
- 游泳馆教练教学课程设计
- 描写七夕节风俗随笔
- BMW销售流程培训教材课件
- 煤炭入股合伙人协议书
- 普通铣床操作规程
- 导尿管相关尿路感染防控措施实施情况督查表
- 三甲医院评审护理院感组专家现场访谈问题梳理(护士)
- 家庭、私有制和国家的起源
- 中职《数学》课程思政教学案例(一等奖)
- 水库移民安置档案分类大纲与编号方案
- GA 1802.2-2022生物安全领域反恐怖防范要求第2部分:病原微生物菌(毒)种保藏中心
- 企业EHS风险管理基础智慧树知到答案章节测试2023年华东理工大学
- 《解放战争》(共48张PPT)
评论
0/150
提交评论