九年级数学配紫色游戏_第1页
九年级数学配紫色游戏_第2页
九年级数学配紫色游戏_第3页
九年级数学配紫色游戏_第4页
九年级数学配紫色游戏_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.频率与概率的应用(3)

“配紫色”游戏利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.用树状图或表格来求概率回顾与思考“配紫色”游戏小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?红白黄蓝绿A盘B盘树状图可以是:“配紫色”游戏开始红白黄蓝绿(红,黄)(红,蓝)(红,绿)(白,黄)(白,蓝)(白,绿)黄蓝绿游戏者获胜的概率是1/6.红白黄蓝绿A盘B盘表格可以是:“配紫色”游戏游戏者获胜的概率是1/6.第二个转盘第一个转盘黄蓝绿红(红,黄)(红,绿)白(白,黄)(白,蓝)(白,绿)红白黄蓝绿A盘B盘()1200红红蓝蓝用如图所示的转盘进行“配紫色”游戏.小颖制作了下图,并据此求出游戏者获胜的概率是1/2.“配紫色”游戏的变异对此你有什么评论?开始红蓝红蓝红蓝(红,红)(红,蓝)(蓝,红)(蓝,蓝)“配紫色”游戏的变异小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”,“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是1/2.1200红1红蓝蓝红2你认为谁做的对?说说你的理由.(蓝,蓝)(蓝,红)蓝色(红2,蓝)(红2,红)红色2(红1,蓝)(红1,红)红色1蓝色红色由“配紫色”游戏的变异想到的1200红1红蓝蓝红2小颖的做法不正确.因为左边的转盘中红色部分和蓝色部分的面积不相同,因而指针落在这两个区域的可能性不同.小亮的做法是解决这类问题的一种常用方法.1200红红蓝蓝小颖小亮用树状图和列表的方法求概率时应注意些什么?用树状图和列表的方法求概率时应注意各种结果出现的可能性务必相同.议一议1200红红蓝蓝1200红1红蓝蓝红2例1、如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成相等的三个扇形).游戏规则是:如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.123例题欣赏解:每次游戏时,所有可能出现的结果如下:总共有6种结果,每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为2的结果只有一种:(1,1),因此游戏者获胜的概率为1/6.转盘摸球112(1,1)(1,2)2(2,1)(2,2)3(1,3)(2,3)用树状图怎么解答例2?请用行动来证明“我能行”.123例2、一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。求两次摸到的球的颜色能配成紫色的概率.如果条件不变,但是第一次摸出的球不放回去,那么两次摸球可以配成紫色的概率有多大?学以致用1253423456小明和小亮用如图所示的转盘做游戏,转动两个转盘各一次.若两次数字和为奇数,则小明获胜,若数字和为偶数则小亮胜.这个游戏对双方公平吗?说说你的理由.不公平.其概率分别为13/25和12/25.在玩中学数学,用数学桌子上放有6张扑克牌,全都正面朝下,其中恰有两张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K,则红方胜,否则蓝方胜.你愿意充当红方还是蓝方?说说你的理由!红方取胜的概率为0.4;蓝方取胜的概率为0.6.再换一种“玩”法如图,小明和小红正在玩一个游戏:每人先抛掷骰子,骰子朝上的数字是几,就将棋子前进几格,并获得格子中的相应物品。现在轮到小明掷,棋子在标有数字“1”的那一格,小明能一次就获得“汽车”吗?小红下一次抛掷可能得到”汽车”吗?她下一次得到”汽车”的概率是多少?灵活多样,玩出花样,

玩出水平,玩出能力用如图所示的两个转盘做“配紫色”游戏,每个转盘都被分成三个面积相等的三个扇形.请求出配成紫色的概率是多少?方案设计设计两个转盘做“配紫色”游戏,使游戏者获胜的概率为1/3.回味无穷用树状图和列表的方法求概率时应注意各种结果出现的可能性务必相同.“配紫色”游戏体现了概率模型的思想,它启示我们:概率是对随机现象的一种数学描述,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.小结拓展由“配紫色”游戏得到了什么知识的升华独立作业P68习题6.3C--1,B--2,A--3题.结束寄语

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论