医疗领域人工智能的应用概要_第1页
医疗领域人工智能的应用概要_第2页
医疗领域人工智能的应用概要_第3页
医疗领域人工智能的应用概要_第4页
医疗领域人工智能的应用概要_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

医疗领域人工智能的应用周素珍,杨会宝,马式雷(山东中医药大学理工学院)摘要:人工智能是计算机科学中涉及研究、设计和应用智能机器的一个重要分支。尤其在医疗卫生领域,人工智能更具有广阔的应用前景和较高的实用价值。本文简述了人工智能的起源与发展,回顾近年来人工智能在医疗领域的应用,重点介绍了人工智能在神经网络中的应用,并进一步展望了人工智能在医疗领域的应用前景。关键词:人工智能;医疗;专家系统;神经网络;前景1引言人工智能(ArtificialIntelligenceAI)是当前科学技术发展中的一门前沿科学,它是由Mc-Carthy等在1956年发起的关于机器模拟智能的学术讨论会上提出的[1]。自此,人工智能广泛应用于医学领域,在临床医疗诊断、神经网络技术、中医学、专家系统以及医学影像诊断中均得到应用。随着科学技术的发展,人工智能技术在医疗诊断中的应用将越来越广泛,越来越重要。2人工智能在医疗领域的应用回顾2.1人工智能发展简史[2]

上世纪三四十年代,Wiener、弗雷治、罗素的数理逻辑,和Church、图灵的数字功用以及计算机处理促使了1956年夏的AI学科诞生。

20世纪60年代以来,生物模仿用来建立功能强大的算法。这方面有进化计算,包括遗传算法、进化策略和进化规划(1962年)。

1992年Bezdek提出计算智能。他和Marks(1993年)指出计算智能取决于制造者提供的数值数据,含有模式识别部分,不依赖于知识;计算智能是认知层次的低层。今天,计算智能涉及神经网络、模糊逻辑、进化计算和人工生命等领域,呈现多学科交叉与集成的趋势。

人工生命以进化计算为基础,研究自组织、自复制、自修复以及形成这些特征的混沌动力学、进化和环境适应,具体包括生命现象的仿生系统、人工建模与仿真、进化动力学、人工生命的计算理论、进化与学习综合系统以及人工生命的应用等。20世纪60年代,罗森布拉特研究感知机,Stahl建立细胞活动模型,Lindenmayer提出了生长发育中的细胞交互作用数学模型。这些模型支持细胞间的通信和差异。70年代以来,Conrad等研究人工仿生系统中的自适应、进化和群体动力学,提出不断完善的“人工世界”模型。80年代,人工神经网络再度兴起促进人工生命的发展。其主要研究方法有信息模型法和工作原理法。其研究途径分为工程技术途径和生物科学途径。

2.2医疗领域人工智能的兴起和医疗专家系统的创建专家系统在90年代兴起,模拟人类专家解决领域问题,知识库的改进与归纳是其重点。医疗专家系统(MedicalExpertSystem,MES)是人工智能技术应用在医疗诊断领域中的一个重要分支[3]。在功能上,它是一个在某个领域内具有专家水平解题能力的程序系统。医学诊断专家系统就是运用专家系统的设计原理与方法,模拟医学专家诊断疾病的思维过程,它可以帮助医生解决复杂的医学问题,可以作为医生诊断的辅助工具,可以继承和发扬医学专家的宝贵理论及丰富的临床经验。第一个人工智能的医疗专家系统早在50年代就出现了,当时为了模拟病人的病症和疾病之间的关系,主要是医学领域的知识被融合到专家系统中。3.2.2人工神经网络在中医学中的应用在中医专家系统知识挖掘中的应用中医学辨证施治过程,实质上是对一大堆数据信息作出处理,提取规律的过程。人工神经网络有较好获得数据规律的能力,应用于中医学具有可行性。中医学中的“辨证论治”中的“证”[10]具有模糊性、不确定性的特点,主观性较强,所以中医的诊断和治疗与医师的经验、水平有较大关系,多年来对“证”的研究思路和方法主要集中在实验研究、临床观察、文章整理、经验总结上。人工神经网络的应用可以替代部分“辨证”过程,选择适当的中医症状作为基本输入和适当的人工神经网络模型,人工神经网络能够根据已有的学习“经验”进行分析,综合提出中医诊断。人工神经网络由神经元结构模型、网络连接模型、网络学习算法等几个要素组成,是具有某些智能代写论文功能的系统。从网络结构划分,人工神经网络有许多不同的种类,如感知器、BP网络、Hopfield网络等,其中BP网络是目前应用最为广泛的神经网络之一。BP网络是一种前向网络,通过网络的结构与权值表达复杂的非线性I/O映射关系,同时BP网络具有优良的自学习功能,可以通过误差的反向传播方法,对照已知样本进行反复训练,调整网络的权值,直至网络的I/O关系在某一训练指标下最接近样本。在中医舌诊研究中的应用赵忠旭等[11]采用神经网络模型对中医舌像分析仪的摄像机、显示器的输入输出三刺激值特征化。并采用动量法和学习率进行自适应调整,有效地抑制网络陷入局部极小或“假饱和”现象。这样舌象分析仪在采集舌图象时,可将相机的输出代入其建立的校正环节模型,然后将它的输出作为计算机的数字驱动值,以达到校正的目的。吴芸等[12]构建了一个“中医舌诊八纲辨证”神经网络知识库。在中医脉象研究中的应用王炳和等[13]针对脉象本身的模糊性特点和中医辨识脉象的思维方式,研究了人工神经网络方法应用于人体脉象的识别问题。建立了一个8-5-7三层结构的脉象人工神经网络模型。采用输入样本的模糊化处理,并对BP算法用加动量的自适应算法加以改进,因此大大减少了训练时间。经280例脉象的识别检验,结果表明,该对7种脉象的识别准确率平均为87%,比传统的模糊聚类方法提高了12个百分点。此研究为计算机识别脉象和辅助诊断疾病提供了一种有效的方法。岳沛平等[14]构建了一种比较实用的基于小波分析BP神经网络的中医脉象信号辨识系统,经1456例临床脉象检测,准确率>90%。徐方维等[15]针对海洛因吸食者的脉象信号与正常人脉象信号的特征差异,成功地应用人工神经网络对15例海洛因吸食者和15例正常人。在中医证候研究中的应用证候是以中医的基本理论为基础,对临床所收集到的信息进行辨证的结果。中医证候体系是一个非线性的、多维多阶的、可以无限组合的复杂巨系统。采用人工神经网络技术挖掘大样本所蕴含的海量信息,从而建立中医证候诊断模型,可能是解开当前证候研究的僵局、取得实质突破的有效方法。人工神经网络的类型多种多样,从功能特性和学习能力来分,典型的神经网络模型主要包括感知器、线性神经网络、多层前向神经网络、自组织映射网络和反馈神经网络等。笔者认为,比较适合应用于中医证候诊断的是BP神经网络以及在此基础上发展起来的模糊神经网络。目前,我们正在进行的基于模糊神经网络的糖尿病肾病中医证候规范研究,其方法就是利用模糊多层感知器网络(FMLP),构建糖尿病肾病中医证候的模糊神经网络模型。我们并同时利用基于BP算法的多层前馈神经网络(BP),以相同的观察资料为研究对象,构建糖尿病肾病中医证候的BP神经网络模型,从解决实际问题的能力比较两种模型的性能,以确立较优糖尿病肾病中医证候神经网络模型。3.2.3基于人工神经网络技术的专家系统基于人工神经网络技术的专家系统在建造知识库时[16],首先根据应用来选择和确定神经网络结构,再选择学习算法,对与求解问题有关的样本进行学习,以调整系统的连接权值,完成知识自动获取和分布式的存储,构建系统的知识库。然而若输入的信息不十分明确导致系统性能降低,这必然也会降低诊断的准确性。而基于神经系统结构和功能模拟基础上的神经网络,可以通过对实例的不断学习,自动获取知识,并将知识分布存储于神经网络中,通过学习不断提高神经网络中神经元之间连接权值的调整过程。系统将根据神经网络当前所接收到的实例问题的相似性确定输出。当环境信息不十分完全时,仍然可以通过计算得出一个比较满意的解答。目前,已建立了心肌梗塞、心绞痛疾病及其并发症的医疗智能诊断系统。根据医生的建议,系统提供了三个人机对话界面:①录入主诉、病史和临床症状。包括性别、年龄、发病时间、前驱症状、病史、消化系统症状、呼吸系统症状等60余项。②录入体征。查体征所能得到的信息,包括心界、心音、磨擦音、湿罗音等20余项。③录入辅助检查结果。包括心电图、心肌酶、心脏彩超、漂浮导管等心内科辅助检查手段的结果300余项。3.2.4人工智能技术在医学影像诊断中的应用尽管人工智能技术可应用于临床领域中的各个方面(组织病理学、传染病学、内科学、精神病学等),但在医学影像领域中,放射科专家大部分情况下还是主要依赖于临床医生建立起来的主观印象。制约影像专家系统发展的难点在于高级视觉系统本身,如从医学扫描器上获得的数据可能是噪声或者是模糊的,而代表解剖结构上的或功能上的分区常常是复杂的和不确定的,当处理这些被称作为证据不确定的非精确信息时,大大增加了专家系统设计的复杂性。目前,随着微电子技术和计算机技术的快速发展,很多制约医学专家系统发展的因素也相继得到解决,应用到医学影像学方面的初级特征提取技术及成像设备(CT,MRI,PET,X线,超声等)得到广泛应用和研究。例如,在乳房X线照片中自动检测丛生的小钙化点的线性滤波和阈值匹配方法,已经被证实可提高放射学专家的诊断精确率。其他应用,如肺部肿瘤的计算机检测,心脏大小的计算分析,胸部放射片上腔隙性疾病的定性,血管角质瘤影像的自动跟踪,纹理分析应用到超声扫描,X射线照相术和CT图像等已经在一些实例中较成功地得到证明[17]。3.3人工智能在医疗记录的应用医学的任何表达包括实验室数据,都可以或者都必须转换为描述语言,因为医学的任何判断和结论都必须人的直接参与,没有任何一种单纯的物理信号或数字信息可以完整描述人。医学的描述性特点也使医学的意义更依赖于给患者的医疗记录,没有一种记录能像医疗记录那样把人、学术、生活、俗务、法律、科学等联系得更紧密。所以医疗记录的繁杂也托负着众望,日益艰巨起来。后来随着电子文本记录法的出现,推进了工作方式乃至观察方式发生改变。上世纪70年代开发的医学信息系统RMIS,它使用了一种就医表格:其右方是患者的主诉、病史描述等,采用文本处理方式,都是先用手写,再由专人输入电脑;其左上方是诊断列表,列出医生诊断的疾病名;左下方是结构化数据列表,记录重要生理参数和检验参数等;RMIS至今还有人使用。近些年SDE有电子版面世,它发扬表格结构输入法的优点,不但能用直接模型处理类似试验设备所产生的简单数据,而且能用间接模型处理有专业依赖性的复杂数据。SDE的结构化数据来源于词典,它的知识编辑器可以起到规范输入词汇的作用。这种特征是电子病历输入方法的一种进步,在中国,有中国特色的文本模板编辑法或半结构化的摘字换句法,都展现了医疗记录向医学人工智能的规范化方向合流的趋势。将电子病历系统嵌套在医学知识决策系统之中;再将知识决策系统嵌套在整体的智能化数字医院体系之中,医疗决策和医疗记录熔为一炉,既完成对患者的医疗全过程本身,又完成医疗过程在医院中充当的角色。具体的思路是:医生应用基于知识库的智能化诊疗平台为患者看病,医生看病的轨迹被自动记录下来,成为电子病历。形成电子病历的技术过程非常简单,电子病历的内容有赖于知识库;人工智能的看病模型非常简单,即计算机+知识库,把智能化的技术难点转嫁给知识表达。4人工智能在医疗领域的应用前景医学人工智能是人工智能发展出来的一大分支,它将为医学诊疗问题提供解决方案,研究最多成果最显著的是医学专家系统。医学专家系统是一个具有大量专门知识与经验的程序系统,它应人工智能技术,根据某个领域一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。专家系统是目前人工智能中最活跃、最有成效的一个研究领域。在“专家系统”的研究中已呈现出成功和有效应用人工智能技术的趋势,并出现了不少优秀的成果。1972年deDomabl研发了“急性腹痛鉴别诊断系统”,1976年Shortliffe完成“传染性疾病鉴别诊断系统MYCIN”,该系统可以对血液传染病的诊断治疗方案提供咨询意见,专业鉴定结果表明,它对细菌血液病、脑膜炎方面的诊断和提供治疗方案的水平已超过了这方面的专家。中国中医界相似的研究从80年代起也开展得如火如荼,大约有140个以经验为主的中医专家系统相继研发。医学专家系统可以解决的问题一般包括解释、预测、诊断、提供治疗方案等。高性能的医学专家系统也已经从学术研究开始进入临床应用研究。随着人工智能整体水平的提高,医学专家系统也将获得发展,正在开发的新一代专家系统有分布式专家系统和协同式专家系统等,其在医学领域的应用将更有利于临床疾病诊断与治疗水平的提高。随着现代科学技术的发展,未来的医学专家系统发展趋势可能会具备以下几个特点。⑴医学专家系统应以解决一些特殊的问题为目的。这些特殊的问题在计算机视觉和人工智能方面没有被研究过。人类对可视图案的认识不同于常规的推理,并且代表明确的领域知识常常在视觉认识过程中下意识地忽略了被用到的那些因素。⑵医学专家系统的模型可能会是以多种智能技术为基础,以并行处理方式、自学能力、记忆功能、预测事件发展能力为目的。目前发展起来的遗传算法、模糊算法、粗糙集理论等非线性数学方法,有可能会跟人工神经网络技术、人工智能技术综合起来构造成新的医学专家系统模型。这些技术必将会推动医学专家系统一场新的革命,因为人工神经网络技术具有强大的自适应、自处理、自学习、记忆功能等,如Yuji等人基于螺旋CT图像的冠状动脉钙化点的诊断系统,就是神经网络在医学专家系统中应用的一个很好例子。5结论人工智能是一门通过计算过程力图理解和模仿智能行为的学科。可实现判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动的自动化(Bellman,1978)。半个世纪以来,人工智能的飞速发展令人瞠目。医学人工智能,以计算机为工具,最终目标直指疾病。实现目标的边界条件是:不改变医学的学术现状,不企图取代医生。主要方法是:抽象医学思维,并将其模型化,以利计算机实现。中间目标是:搭建知识平台,运用智能方法,辅助医务人员扩大视界,更好地发挥聪明才智。尽管已取得重大进展,但无论是实际问题还是研究方法都仍然需要系统深入的研究。

参考文献[1]陈真诚,等.人工智能技术及其在医学诊断中的应用及发展[J].生物医学工程杂志,2002,19(03):505-509.[2]蔡自兴,徐光祐。人工智能及其应用,第三版,清华大学出版社,2004.2.[3]邵虹.小型微型计算机系统[M],2003,3:24(3)

[4]SATIOK.MedicaldiagnosticexpertsystembasedonPDPmodel[M].Proc.IEEEIntl.Conf.OnNeuralNetwork,SanDiego,1998.[5]焦李成.神经网络计算[M].西安:西安电子科技大学出版社,1993[6]曾照芳,安琳.人工智能技术在临床医疗诊断中的应用及发展[J].

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论