2023-2024学年山东省临沂市兰山区部分学校数学九年级第一学期期末统考模拟试题含解析_第1页
2023-2024学年山东省临沂市兰山区部分学校数学九年级第一学期期末统考模拟试题含解析_第2页
2023-2024学年山东省临沂市兰山区部分学校数学九年级第一学期期末统考模拟试题含解析_第3页
2023-2024学年山东省临沂市兰山区部分学校数学九年级第一学期期末统考模拟试题含解析_第4页
2023-2024学年山东省临沂市兰山区部分学校数学九年级第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山东省临沂市兰山区部分学校数学九年级第一学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,D,E分别是△ABC的边AB,AC上的中点,CD与BE交于点O,则S△DOE:S△BOC的值为()A. B. C. D.2.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:93.已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点B的坐标为(1,0)其图象如图所示,下列结论:①abc>0;②2a﹣b=0;③一元二次方程ax2+bx+c=0的两个根是﹣3和1;④当y>0时,﹣3<x<1;⑤当x>0时,y随x的增大而增大:⑥若点E(﹣4,y1),F(﹣2,y2),M(3,y3)是函数图象上的三点,则y1>y2>y3,其中正确的有()个A.5 B.4 C.3 D.24.如图,中,.将绕点顺时针旋转得到,边与边交于点(不在上),则的度数为()A. B. C. D.5.把抛物线向右平移个单位,再向下平移个单位,即得到抛物线()A.y=-(x+2)2+3 B.y=-(x-2)2+3 C.y=-(x+2)2-3 D.y=-(x-2)2-36.图2是图1中长方体的三视图,若用表示面积,则()A. B. C. D.7.已知的直径是8,直线与有两个交点,则圆心到直线的距离满足()A. B. C. D.8.方程的解是()A.0 B.3 C.0或–3 D.0或39.下列实数:,其中最大的实数是()A.-2020 B. C. D.10.下列各式属于最简二次根式的是()A. B. C. D.二、填空题(每小题3分,共24分)11.在一个不透明的袋子中有个红球、个绿球和个白球,这些球除颜色外都相同,摇匀后从袋子中任意摸出一个球,摸出_______颜色的球的可能性最大.12.如图,正方形网格中,5个阴影小正方形是一个正方体表面展开图的一部分.现从其余空白小正方形中任取一个涂上阴影,则图中六个阴影小正方形能构成这个正方体的表面展开图的概率是______

.13.如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为_____.14.某毛绒玩具厂对一批毛绒玩具进行质量抽检,相关数据如下:抽取的毛绒玩具数2151111211511111115112111优等品的频数19479118446292113791846优等品的频率1.9511.9411.9111.9211.9241.9211.9191.923从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是__.(精确到15.如图,已知梯形ABCO的底边AO在轴上,,AB⊥AO,过点C的双曲线交OB于D,且,若△OBC的面积等于3,则k的值为__________.16.如图,半圆O的直径AB=18,C为半圆O上一动点,∠CAB=а,点G为△ABC的重心.则GO的长为__________.17.如图,已知⊙O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP=_____.18.一种微粒的半径是1.11114米,这个数据用科学记数法表示为____.三、解答题(共66分)19.(10分)某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个柱子,点恰好在水面中心,安装在柱子顶端处的圆形喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过的任意平面上,水流喷出的高度与水平距离之间的关系如图所示,建立平面直角坐标系,右边抛物线的关系式为.请完成下列问题:(1)将化为的形式,并写出喷出的水流距水平面的最大高度是多少米;(2)写出左边那条抛物线的表达式;(3)不计其他因素,若要使喷出的水流落在池内,水池的直径至少要多少米?20.(6分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.21.(6分)如图,已知AB是⊙O的直径,AC为弦,且平分∠BAD,AD⊥CD,垂足为D.(1)求证:CD是⊙O的切线;(2)若⊙O的直径为4,AD=3,试求∠BAC的度数.22.(8分)如图,在Rt△ABC中,∠C=90°,点O是斜边AB上一定点,到点O的距离等于OB的所有点组成图形W,图形W与AB,BC分别交于点D,E,连接AE,DE,∠AED=∠B.(1)判断图形W与AE所在直线的公共点个数,并证明.(2)若,,求OB.23.(8分)为了测量水平地面上一棵不可攀的树的高度,某学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在与树底端B相距8米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2米,观察者目高CD=1.5米,则树AB的高度.24.(8分)如图,已知抛物线(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C,且OC=OB.(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.25.(10分)如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)∠C=45°,⊙O的半径为2,求阴影部分面积.26.(10分)总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆人次,进馆人次逐月增加,到第三个月末累计进馆人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【分析】DE为△ABC的中位线,则DE∥BC,DE=BC,再证明△ODE∽△OCB,由相似三角形的性质即可得到结论.【详解】解:∵点D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∴∠ODE=∠OCB,∠OED=∠OBC,∴△ODE∽△OCB,∴,故选:C.【点睛】本题考查了相似三角形的判定与性质,三角形中位线定理,熟练掌握相似三角形的性质定理是解题的关键.2、A【分析】根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴,故选A.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.3、C【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性逐个进行判断,得出答案.【详解】由抛物线的开口向上,可得a>0,对称轴是x=﹣1,可得a、b同号,即b>0,抛物线与y轴交在y轴的负半轴,c<0,因此abc<0,故①不符合题意;对称轴是x=﹣1,即﹣=﹣1,即2a﹣b=0,因此②符合题意;抛物线的对称轴为x=﹣1,与x轴的一个交点B的坐标为(1,0),可知与x轴的另一个交点为(﹣3,0),因此一元二次方程ax2+bx+c=0的两个根是﹣3和1,故③符合题意;由图象可知y>0时,相应的x的取值范围为x<﹣3或x>1,因此④不符合题意;在对称轴的右侧,y随x的增大而增大,因此当x>0时,y随x的增大而增大是正确的,因此⑤符合题意;由抛物线的对称性,在对称轴的左侧y随x的增大而减小,∵﹣4<﹣2,∴y1>y2,(3,y3)l离对称轴远因此y3>y1,因此y3>y1>y2,因此⑥不符合题意;综上所述,正确的结论有3个,故选:C.【点睛】考查二次函数的图象和性质,二次函数与一元二次方程的关系,熟练掌握a、b、c的值决定抛物线的位置,抛物线的对称性是解决问题的关键.4、D【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得的度数.【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.5、D【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】抛物线向右平移个单位,得:,再向下平移个单位,得:.故选:.【点睛】本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.6、A【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S主=x1+1x=x(x+1),S左=x1+x=x(x+1),∴俯视图的长为x+1,宽为x+1,则俯视图的面积S俯=(x+1)(x+1)=x1+3x+1.故选A.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.7、B【分析】先求出圆的半径,再根据直线与圆的位置关系与d和r的大小关系即可得出结论.【详解】解:∵的直径是8∴的半径是4∵直线与有两个交点∴0≤d<4(注:当直线过圆心O时,d=0)故选B.【点睛】此题考查的是根据圆与直线的位置关系求圆心到直线的距离的取值范围,掌握直线与圆的位置关系与d和r的大小关系是解决此题的关键.8、D【解析】运用因式分解法求解.【详解】由得x(x-3)=0所以,x1=0,x2=3故选D【点睛】掌握因式分解法解一元二次方程.9、C【解析】根据正数大于0,0大于负数,正数大于负数,比较即可;【详解】∵=-2020,=-2020,=2020,=,∴,故选C.【点睛】本题主要考查了实数大小比较,掌握实数大小比较是解题的关键.10、B【解析】根据最简二次根式的定义进行判断即可.【详解】解A、,不是最简二次根式;B、2不能再开方,是最简二次根式;C、,不是最简二次根式;D、=2,不是最简二次根式.故选:B.【点睛】本题考查了最简二次根式,掌握二次根式的性质及最简二次根式的定义是解答本题的关键.二、填空题(每小题3分,共24分)11、白【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【详解】根据题意,袋子中共6个球,其中有1个红球,2个绿球和3个白球,故将球摇匀,从中任取1球,

①恰好取出红球的可能性为

②恰好取出绿球的可能性为

③恰好取出白球的可能性为

摸出白颜色的球的可能性最大.故答案是:白.【点睛】本题主要考查了可能性大小计算,即概率的计算方法,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.12、【分析】首先确定所求的阴影小正方形可能的位置总数目,除以剩余空白部分的正方形的面积个数即为所求的概率.【详解】解:从阴影下边的四个小正方形中任选一个,就可以构成正方体的表面展开图,∴能构成这个正方体的表面展开图的概率是.故答案为:.【点睛】本题将概率的求解设置于正方体的表面展开图中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比;“一,四,一”组合类型的6个正方形能组成正方体.13、y=﹣x或y=-4x【解析】分析:直接利用旋转的性质结合平移的性质得出对应点位置,再利用待定系数法求出正比例函数解析式.详解:当点A绕坐标原点O逆时针旋转90°后,再向左平移1个单位长度得到点A′,则A′(-3,4),设过点A′的正比例函数的解析式为:y=kx,则4=-3k,解得:k=-,则过点A′的正比例函数的解析式为:y=-x,同理可得:点A绕坐标原点O顺时针旋转90°后,再向左平移1个单位长度得到点A′,此时A′(1,-4),设过点A′的正比例函数的解析式为:y=k′x,则-4=k′,则过点A′的正比例函数的解析式为:y=-4x.故答案为y=﹣x或y=-4x.点睛:此题主要考查了旋转的性质、平移的性质、待定系数法求出正比例函数解析式,正确得出对应点坐标是解题关键.14、1.92【分析】由表格中的数据可知优等品的频率在1.92左右摆动,利用频率估计概率即可求得答案.【详解】观察可知优等品的频率在1.92左右,所以从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是1.92,故答案为:1.92.【点睛】本题考查了利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,由此可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率的近似值,随着实验次数的增多,值越来越精确.15、【分析】设C(x,y),BC=a.过D点作DE⊥OA于E点.根据DE∥AB得比例线段表示点D坐标;根据△OBC的面积等于3得关系式,列方程组求解.【详解】设C(x,y),BC=a.则AB=y,OA=x+a.过D点作DE⊥OA于E点.∵OD:DB=1:2,DE∥AB,∴△ODE∽△OBA,相似比为OD:OB=1:3,∴DE=AB=y,OE=OA=(x+a).∵D点在反比例函数的图象上,且D((x+a),y),∴y•(x+a)=k,即xy+ya=9k,∵C点在反比例函数的图象上,则xy=k,∴ya=8k.∵△OBC的面积等于3,∴ya=3,即ya=1.∴8k=1,k=.故答案为:.16、3【分析】根据三角形重心的概念直接求解即可.【详解】如图,连接OC,∵AB为直径,∴∠ACB=90,∵点O是直径AB的中点,重心G在半径OC,∴.故答案为:3.【点睛】本题考查了三角形重心的概念及性质、直径所对圆周角为直角、斜边上的中线等于斜边的一半,熟记并灵活运用三角形重心的性质是解题的关键.17、6【分析】根据题意作出合适的辅助线,然后根据垂径定理、勾股定理即可求得OP的长,本题得以解决.【详解】解:作OE⊥AB交AB与点E,作OF⊥CD交CD于点F,连接OB,如图所示,则AE=BE,CF=DF,∠OFP=∠OEP=∠OEB=90°,又∵圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四边形OEPF是矩形,OE==6,同理可得,OF=6,∴EP=6,∴OP=,故答案为:.【点睛】本题考查垂径定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.18、【解析】试题分析:科学计数法是指a×,且1≤<11,小数点向右移动几位,则n的相反数就是几.考点:科学计数法三、解答题(共66分)19、(1)喷出的水流距水平面的最大高度是4米.(2).(3)水池的直径至少要6米.【分析】(1)利用配方法将一般式转化为顶点式,即可求出喷出的水流距水平面的最大高度;(2)根据两抛物线的关于y轴对称,即可求出左边抛物线的二次项系数和顶点坐标,从而求出左边抛物线的解析式;(3)先求出右边抛物线与x轴的交点的横坐标,利用对称性即可求出水池的直径的最小值.【详解】解:(1)∵,∴抛物线的顶点式为.∴喷出的水流距水平面的最大高度是4米.(2)∵两抛物线的关于y轴对称∴左边抛物线的a=-1,顶点坐标为(-1,4)左边抛物线的表达式为.(3)将代入,则得,解得,(求抛物线与x轴的右交点,故不合题意,舍去).∵(米)∴水池的直径至少要6米.【点睛】此题考查的是二次函数的应用,掌握将二次函数的一般式转化为顶点式、利用顶点式求二次函数的解析式和求抛物线与x轴的交点坐标是解决此题的关键.20、(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.21、(1)证明见解析;(2)30°.【解析】(1)连接OC,证先利用角平分线的定义和等腰三角形的性质证明∠OCA=∠DAC,从而OC∥AD,由平行线的性质可得OC⊥CD,从而得出CD是⊙O切线;(2)连接BC,证明△ACB∽△ADC,求出AC的长度,再求出∠BAC的余弦,得出∠BAC的度数.【详解】解:(1)连结OC.∵平分,∴∠BAC=∠DAC.又OA=OC,∴∠BAC=∠OCA,∴∠OCA=∠DAC,∴OC∥AD.∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线.(2)连结BC.∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠ADC=90°.又∠BAC=∠DAC,∴△ACB∽△ADC.∴,,,∴AC=.在Rt△ACB中,cos∠BAC=,∴∠BAC=30°.【点睛】本题主要考查了等腰三角形的性质,平行线的判定与性质,圆的切线的判定及锐角三角函数的知识.连接半径是证明切线的一种常用辅助线的做法,求角的度数可以借助于三角函数.22、(2)有一个公共点,证明见解析;(2).【分析】(2)先根据题意作出图形W,再作辅助线,连接OE,证明AE是圆O的切线即可;(2)先利用解直角三角形的知识求出CE=2,从而求出BE=2.再由AC∥DE得出,把各线段的长代入即可求出OB的值.【详解】(2)判断有一个公共点证明:连接OE,如图.∵BD是⊙O的直径,∴∠DEB=90°.∵OE=OB,∴∠OEB=∠B.又∵∠AED=∠B,∴∠AED=∠OEB.∴∠AEO=∠AED+∠DEO=∠OEB+∠DEO=∠DEB=90°.∴AE是⊙O的切线.∴图形W与AE所在直线有2个公共点.(2)解:∵∠C=90°,,,∴AC=2,.∵∠DEB=90°,∴AC∥DE.∴∠CAE=∠AED=B.在Rt△ACE中,∠C=90°,AC=2,∴CE=2.∴BE=2.∵AC∥DE∴.∴,∴.【点睛】本题考查了圆的综合知识,掌握相关知识并灵活运用是解题的关键.23、AB=6米.【分析】根据镜面反射的性质求出△ABE∽△CDE,再根据其相似比解答.【详解】解:根据题意,得∠CDE=∠ABE=90°,∠CED=∠AEB,则△ABE∽△CDE,则,即,解得:AB=6米.答:树AB的高度为6米.【点睛】本题考查相似三角形的应用,应用反射的基本性质,得出三角形相似,运用相似比即可解答.24、(1)y=-x2-2x+3(2)(-,)(3)满足条件的点P的坐标为P(-1,1)或(-1,-2)【详解】(1)∵抛物线()与x轴交于点A(1,0)和点B(﹣3,0),∴OB=3,∵OC=OB,∴OC=3,∴c=3,∴,解得:,∴所求抛物线解析式为:;(2)如图2,过点E作EF⊥x轴于点F,设E(a,)(﹣3<a<0),∴EF=,BF=a+3,OF=﹣a,∴S四边形BOCE==BF•EF+(OC+EF)•OF===,∴当a=时,S四边形BOCE最大,且最大值为.此时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论