版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖南省长沙市雨花区雅礼中学九年级数学第一学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.函数y=(x+1)2-2的最小值是()A.1 B.-1 C.2 D.-22.下列方程中,是关于x的一元二次方程的是()A.5x+5=2x﹣1 B.y2﹣7y=0C.ax2+bc+c=0 D.2x2+2x=x2-13.如图,一次函数y=﹣x+3的图象与反比例函数y=﹣的图象交于A,B两点,则不等式|﹣x+3|>﹣的解集为()A.﹣1<x<0或x>4 B.x<﹣1或0<x<4C.x<﹣1或x>0 D.x<﹣1或x>44.在中,,,则的值是()A. B. C. D.5.如图,△ABC≌△AEF且点F在BC上,若AB=AE,∠B=∠E,则下列结论错误的是()A.AC=AF B.∠AFE=∠BFE C.EF=BC D.∠EAB=∠FAC6.反比例函数y=﹣的图象在()A.第二、四象限 B.第一、三象限 C.第一、二象限 D.第三、四象限7.下列函数中,是的反比例函数的是()A. B. C. D.8.下列运算正确的是()A.5m+2m=7m2B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3D.(b+2a)(2a﹣b)=b2﹣4a29.已知一个圆锥的母线长为30cm,侧面积为300πcm,则这个圆锥的底面半径为()A.5cm B.10cm C.15cm D.20cm10.如图,网格中的两个三角形是位似图形,它们的位似中心是()A.点A B.点B C.点C D.点D二、填空题(每小题3分,共24分)11.如图,在菱形中,与交于点,若,则菱形的面积为_____.12.如图,P1是反比例函数(k>0)在第一象限图象上的一点,点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则A2点的坐标为_____.13.如图,将一张画有内切圆⊙P的直角三角形纸片AOB置于平面直角坐标系中,已知点A(0,3),B(4,0),⊙P与三角形各边相切的切点分别为D、E、F.将直角三角形纸片绕其右下角的顶点依次按顺时针方向旋转,第一次旋转至图①位置,第二次旋转至图②位置,…,则直角三角形纸片旋转2018次后,它的内切圆圆心P的坐标为____.14.如图,在等腰直角△ABC中,∠C=90°,将△ABC绕顶点A逆时针旋转80°后得到△AB′C′,则∠CAB′的度数为_____.15.二次函数的图象与轴交于两点(点在点的左侧),与轴交于点,作直线,将直线下方的二次函数图象沿直线向上翻折,与其它剩余部分组成一个组合图象,若线段与组合图象有两个交点,则的取值范围为_____.16.已知抛物线与轴交于两点,若点的坐标为,抛物线的对称轴为直线,则点的坐标为__________.17.如图,是的直径,点、在上,连结、、、,若,,则的度数为________.18.如图,在四边形ABCD中,∠BAD=∠BCD=90°,AB+AD=8cm.当BD取得最小值时,AC的最大值为_____cm.三、解答题(共66分)19.(10分)若一条圆弧所在圆半径为9,弧长为,求这条弧所对的圆心角.20.(6分)用配方法解方程:x2﹣8x+1=021.(6分)若边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,记旋转角为a.(I)如图1,当a=60°时,求点C经过的弧的长度和线段AC扫过的扇形面积;(Ⅱ)如图2,当a=45°时,BC与D′C′的交点为E,求线段D′E的长度;(Ⅲ)如图3,在旋转过程中,若F为线段CB′的中点,求线段DF长度的取值范围.22.(8分)二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.23.(8分)某网店销售一种商品,其成本为每件30元.根据市场调查,当每件商品的售价为元()时,每周的销售量(件)满足关系式:.(1)若每周的利润为2000元,且让消费者得到最大的实惠,则售价应定为每件多少元?(2)当时,求每周获得利润的取值范围.24.(8分)经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x(1)求出y与x的函数关系式(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.25.(10分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E=∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数.26.(10分)2019年全国青少年禁毒知识竞赛开始以来,某市青少年学生踊跃参加,掀起了学习禁毒知识的热潮,禁毒知识竞赛的成绩分为四个等级:优秀,良好,及格,不及格.为了了解该市广大学生参加禁毒知识竞赛的成绩,抽取了部分学生的成绩,根据抽查结果,绘制了如下两幅不完整的统计图:(1)本次抽查的人数是;扇形统计图中不及格学生所占的圆心角的度数为;(2)补全条形统计图;(3)若某校有2000名学生,请你根据调查结果估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有多少人?
参考答案一、选择题(每小题3分,共30分)1、D【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.2、D【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A、是关于x的一元一次方程,不是一元二次方程,故本选项不符合题意;B、是关于y的一元二次方程,不是关于x的一元二次方程,故本选项不符合题意;C、只有当a≠0时,是关于x的一元二次方程,故本选项不符合题意;D、是关于x的一元二次方程,故本选项符合题意;故选:D.【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键.3、C【分析】先解方程组得A(﹣1,4),B(4,﹣1),然后利用函数图象和绝对值的意义可判断x<﹣1或x>1时,|﹣x+3|>﹣.【详解】解方程组得或,则A(﹣1,4),B(4,﹣1),当x<﹣1或x>1时,|﹣x+3|>﹣,所以不等式|﹣x+3|>﹣的解集为x<﹣1或x>1.故选:C.【点睛】考核知识点:一次函数与反比例函数.解方程组求函数图象交点是关键.4、C【分析】作出图形,设BC=2k,AB=5k,利用勾股定理列式求出AC,再根据锐角的正弦等于对边比斜边,列式即可得解.【详解】解:如图,∴设BC=2k,AB=5k,∴由勾股定理得∴故选C.【点睛】本题考查了锐角三角函数的定义,利用“设k法”表示出三角形的三边求解更加简便.5、B【分析】全等三角形的对应边相等,对应角相等,△ABC≌△AEF,可推出AB=AE,∠B=∠E,AC=AF,EF=BC.【详解】∵△ABC≌△AEF∴AB=AE,∠B=∠E,AC=AF,EF=BC故A,C选项正确.∵△ABC≌△AEF∴∠EAF=∠BAC∴∠EAB=∠FAC故D答案也正确.∠AFE和∠BFE找不到对应关系,故不一定相等.故选:B.【点睛】本题考查全等三角形的性质,全等三角形对应边相等,对应角相等.6、A【解析】根据反比例函数y=(k≠0)的图象,当k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;当k<0时图象位于第二、四象限,在每个象限内,y随x的增大而增大可得:∵k=-2<0,
∴函数图象在二、四象限.
故选B.【点睛】反比例函数y=(k≠0)的图象:当k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;当k<0时图象位于第二、四象限,在每个象限内,y随x的增大而增大.7、B【分析】根据是的反比例函数的定义,逐一判断选项即可.【详解】A、是正比例函数,故本选项不符合题意.B、是的反比例函数,故本选项符合题意;C、不是的反比例函数,故本选项不符合题意;D、是正比例函数,故本选项不符合题意;故选:B.【点睛】本题主要考查反比例函数的定义,掌握反比例函数的形式(k≠0的常数),是解题的关键.8、C【解析】试题分析:选项A,根据合并同类项法则可得5m+2m=(5+2)m=7m,错误;选项B,依据单项式乘单项式法则可得﹣2m2•m3=﹣2m5,错误;选项C,根据积的乘方法则可得(﹣a2b)3=﹣a6b3,正确;选项D,根据平方差公式可得(b+2a)(2a﹣b)=(2a+b)(2a﹣b)=4a2﹣b2,错误.故答案选C.考点:幂的乘方与积的乘方;合并同类项;单项式乘单项式;平方差公式.9、B【解析】设这个圆锥的底面半径为r,根据圆锥的侧面积公式可得π×r×30=300π,解得r=10cm,故选B.10、D【分析】利用对应点的连线都经过同一点进行判断.【详解】如图,位似中心为点D.故选D.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行.二、填空题(每小题3分,共24分)11、.【分析】根据菱形的面积等于对角线乘积的一半求解即可.【详解】四边形是菱形,,,菱形的面积为;故答案为:.【点睛】本题考查了菱形的性质,菱形的性质有:具有平行四边形的性质;菱形的四条边相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半.12、(2,0)【分析】由于△P1OA1为等边三角形,作P1C⊥OA1,垂足为C,由等边三角形的性质及勾股定理可求出点P1的坐标,根据点P1是反比例函数y=(k>0)图象上的一点,利用待定系数法求出此反比例函数的解析式;作P2D⊥A1A2,垂足为D.设A1D=a,由于△P2A1A2为等边三角形,由等边三角形的性质及勾股定理,可用含a的代数式分别表示点P2的横、纵坐标,再代入反比例函数的解析式中,求出a的值,进而得出A2点的坐标.【详解】作P1C⊥OA1,垂足为C,∵△P1OA1为边长是2的等边三角形,∴OC=1,P1C=2×=,∴P1(1,).代入y=,得k=,所以反比例函数的解析式为y=.作P2D⊥A1A2,垂足为D.设A1D=a,则OD=2+a,P2D=a,∴P2(2+a,a).∵P2(2+a,a)在反比例函数的图象上,∴代入y=,得(2+a)•a=,化简得a2+2a﹣1=0解得:a=﹣1±.∵a>0,∴a=﹣1+.∴A1A2=﹣2+2,∴OA2=OA1+A1A2=2,所以点A2的坐标为(2,0).故答案为:(2,0).【点睛】此题综合考查了反比例函数的性质,利用待定系数法求函数的解析式,正三角形的性质等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.13、(8075,1)【分析】旋转后的三角形内切圆的圆心分别为P1,P2,P3,过圆心作垂直于x轴,分别交x轴于点为E1,E2,E3,根据已知A(0,3),B(4,0),可求得AB长度和三角形内切圆的半径,依次求出OE1,OE2,OE3,OE4,OE5,OE6的长,找到规律,求得OE2018的长,即可求得直角三角形纸片旋转2018次后,它的内切圆圆心P的坐标.【详解】如图所示,旋转后的三角形内切圆的圆心分别为P1,P2,P3,过圆心作垂直于x轴,分别交x轴于点为E1,E2,E3设三角形内切圆的半径为r∵△AOB是直角三角形,A(0,3),B(4,0)∴∵⊙P是△AOB的内切圆∴即∴r=1∴BE=BF=OB-OE=4-1=3∵△BO1A1是△AOB绕其B点按顺时针方向旋转得到∴BE1=BF=3∴OE1=4+3∵A1E2=3-1=2∴OE2=4+5+2∴OE3=4+5+3+1同理可推得OE4=4+5+3+4+3,OE5=4+5+3+4+5+2,OE6=4+5+3+4+5+3+12018÷3=6722OE2018=672×(4+5+3)+(4+5+2)=8075三角形在翻折后内切圆的纵坐标不变∴P2018(8075,1)故答案为:(8075,1)【点睛】本题是坐标的规律题,考查了图形翻折的性质,翻转后图形对应的边和角不变,本题应用了三角形内切圆的性质,及三角形内切圆半径的求法,用勾股定理解直角三角形等知识.14、125°【分析】根据等腰直角三角形的性质得到∠CAB=45°,根据旋转的性质得到∠BAB′=80°,结合图形计算即可.【详解】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,由旋转的性质可知,∠BAB′=80°,∴∠CAB′=∠CAB+∠BAB′=125°,故答案为:125°.【点睛】本题考查旋转的性质,关键在于熟练掌握基础性质.15、或【解析】画出图形,采用数形结合,分类讨论讨论,分直线y=t在x轴上方和下方两种情况,需要注意的是,原抛物线与线段BC本来就有B、C两个交点.具体过程见详解.【详解】解:分类讨论(一):原抛物线与线段BC就有两个交点B、C.当抛物线在x轴下方部分,以x轴为对称轴向上翻折后,就会又多一个交点,所以要满足只有两个交点,直线y=t需向上平移,点B不再是交点,交点只有点C和点B、C之间的一个点,所以t>0;当以直线y=3为对称轴向上翻折时,线段与组合图象就只有点C一个交点了,不符合题意,所以t<3,故;(二)∵=(x-2)2-1,∴抛物线沿翻折后的部分是抛物线)2+k在直线y=t的上方部分,当直线BC:y=-x+3与抛物线只有一个交点时,即的△=0,解得k=,此时线段BC与组合图象W的交点,既有C、B,又多一个,共三个,不符合题意,所以翻折部分需向下平移,即直线y=t向下平移,k=时,抛物线)2+的顶点坐标为(2,),与的顶点(2,-1)的中点是(2,-),所以t<-,又因为,所以.综上所述:t的取值范围是:或故答案为或.【点睛】本题考查抛物线的翻折和上下平移、抛物线和线段的交点问题.解题关键是熟练掌握二次函数的图像和性质.16、【解析】根据抛物线对称轴是直线及两点关于对称轴直线对称求出点B的坐标即可.【详解】解:∵抛物线与轴交于两点,且点的坐标为,抛物线的对称轴为直线∴点B的横坐标为即点B的坐标为【点睛】本题考查抛物线的对称性,利用数形结合思想确定关于直线对称的点的坐标是本题的解题关键.17、°【分析】先由直径所对的圆周角为90°,可得:∠ADB=90°,根据同圆或等圆中,弦相等得到弧相等得到圆周角相等,得到∠A的度数,根据直角三角形的性质得到∠ABD的度数,即可得出结论.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵BD=CD,∴弧BD=弧CD,∴∠A=∠DBC=20°,∴∠ABD=90°-20°=70°,∴∠ABC=∠ABD-∠DBC=70°-20°=50°.故答案为:50°.【点睛】本题考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,直径所对的圆周角为90°.18、【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD为直径的圆上.则AC为直径时最长,则最大值为4.【详解】解:设AB=x,则AD=8﹣x,∵∠BAD=∠BCD=90°,∴BD2=x2+(8﹣x)2=2(x﹣4)2+1.∴当x=4时,BD取得最小值为4.∵A,B,C,D四点在以BD为直径的圆上.如图,∴AC为直径时取得最大值.AC的最大值为4.故答案为:4.【点睛】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.三、解答题(共66分)19、【分析】根据弧长公式计算即可.【详解】∵,,∴,∴【点睛】此题考查弧长公式,熟记公式并掌握各字母的意义即可正确解答.20、,.【解析】试题分析:本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.试题解析:∵x2﹣8x+1=0,∴x2﹣8x=﹣1,∴x2﹣8x+16=﹣1+16,∴(x﹣4)2=15,解得,.考点:解一元二次方程-配方法.21、(I)12π;(Ⅱ)D′E=6﹣6;(Ⅲ)1﹣1≤DF≤1+1.【分析】(Ⅰ)根据正方形的性质得到AD=CD=6,∠D=90°,由勾股定理得到AC=6,根据弧长的计算公式和扇形的面积公式即可得到结论;(Ⅱ)连接BC′,根据题意得到B在对角线AC′上,根据勾股定理得到AC′==6,求得BC′=6﹣6,推出△BC′E是等腰直角三角形,得到C′E=BC′=12﹣6,于是得到结论;(Ⅲ)如图1,连接DB,AC相交于点O,则O是DB的中点,根据三角形中位线定理得到FO=AB′=1,推出F在以O为圆心,1为半径的圆上运动,于是得到结论.【详解】解:(Ⅰ)∵四边形ABCD是正方形,∴AD=CD=6,∠D=90°,∴AC=6,∵边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,∴∠CAC′=60°,∴的长度==2π,线段AC扫过的扇形面积==12π;(Ⅱ)解:如图2,连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=6,在Rt△AB′C′中,AC′==6,∴BC′=6﹣6,∵∠C′BE=180°﹣∠ABC=90°,∠BC′E=90°﹣45°=45°,∴△BC′E是等腰直角三角形,∴C′E=BC′=12﹣6,∴D′E=C′D′﹣EC′=6﹣(12﹣6)=6﹣6;(Ⅲ)如图1,连接DB,AC相交于点O,则O是DB的中点,∵F为线段BC′的中点,∴FO=AB′=1,∴F在以O为圆心,1为半径的圆上运动,∵DO=1,∴DF最大值为1+1,DF的最小值为1﹣1,∴DF长的取值范围为1﹣1≤DF≤1+1.【点睛】本题考查了旋转的综合题,正方形性质,全等三角形判定与性质,三角形中位线定理.(Ⅲ)问解题的关键是利用中位线定理得出点P的轨迹.22、(1)50,30;(2)答案见解析;(3)36;(4)1800人.【分析】(1)由赞同的人数除以赞同的人数所占的百分比,即可求出样本容量,再求出无所谓态度的人数,进而求出a的值;(2)由(1)可知无所谓态度的人数,将条形统计图补充完整即可;(3)求出不赞成人数的百分数,即可求出圆心角的度数;(4)求出“赞同”和“非常赞同”两种态度的人数所占的百分比,用样本估计总体的思想计算即可.【详解】(1)20÷40%=50(人),无所谓态度的人数为50﹣10﹣20﹣5=15,则a=;(2)补全条形统计图如图所示:(3)不赞成人数占总人数的百分数为×100%=10%,持“不赞同”态度的学生人数的百分比所占扇形的圆心角为10%×360°=36°,(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800人.考点:条形统计图;扇形统计图;用样本估计总体.23、(1)售价应定为每件40元;(2)每周获得的利润的取值范围是1250元2250元.【分析】(1)根据题意列出方程即可求解;(2)根据题意列出二次函数,根据求出W的取值.【详解】解:(1)根据题意得,解得,.∵让消费者得到最大的实惠,∴.答:售价应定为每件40元.(2).∵,∴当时,有最大值2250.当时,;当时,.∴每周获得的利润的取值范围是1250元2250元.【点睛】此题主要考查二次函数的应用,解题的关键是根据题意找到等量关系列出方程或二次函数进行求解.24、(1)当1≤x<50时,y=﹣2x2+180x+2000,当50≤x≤90时,y=﹣120x+12000;(2)第45天时,当天销售利润最大,最大利润是6050元;(3)该商品在销售过程中,共41天每天销售利润不低于4800元.【解析】试题分析:(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.试题解析:(1)当1≤x<50时,y=(x+40﹣30)(200-2x)=﹣2x2+180x+2000,当50≤x≤90时,y=(90﹣30)(200-2x)=﹣120x+12000;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.25、(1)证明见详解;(2);(3)30°或45°.【分析】(1)由题意:∠E=90°-∠ADE,证明∠ADE=90°-∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 盘子商业机会挖掘与战略布局策略研究报告
- 定时传感器产品供应链分析
- 家用罐装饮料保温容器产品供应链分析
- 船用光反射镜项目运营指导方案
- 家具的定制制造行业相关项目经营管理报告
- 济南市区住房出租合同书
- 多元文化音乐行业经营分析报告
- 自行车车架项目运营指导方案
- 草地曲棍球运动用球商业机会挖掘与战略布局策略研究报告
- 夯实机产业链招商引资的调研报告
- 2023-2024学年江苏省南通市如皋市八年级(上)期中语文试卷
- DZ/T 0452.2-2023 稀土矿石化学分析方法 第2部分:铝、铁、钙、镁、钾、钠、钛、锰、磷及15个稀土元素含量测定 混合酸分解―电感耦合等离子体原子发射光谱法(正式版)
- 叙事疗法咨询方案
- 中华人民共和国突发事件应对法课件
- 大班团体律动:仙女的魔法彩带
- 24春国家开放大学《教育研究方法#》作业1-4参考答案
- 水稻插秧机的调整课件讲解
- GB/T 43935-2024矿山土地复垦与生态修复监测评价技术规范
- 教育部:中小学综合实践活动课程指导纲要
- 机场地勤的职业规划
- 大学物理-5省公开课金奖全国赛课一等奖微课获奖课件
评论
0/150
提交评论