2023-2024学年江西省吉水县外国语学校数学九上期末预测试题含解析_第1页
2023-2024学年江西省吉水县外国语学校数学九上期末预测试题含解析_第2页
2023-2024学年江西省吉水县外国语学校数学九上期末预测试题含解析_第3页
2023-2024学年江西省吉水县外国语学校数学九上期末预测试题含解析_第4页
2023-2024学年江西省吉水县外国语学校数学九上期末预测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江西省吉水县外国语学校数学九上期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.二次函数y=kx2+2x+1的部分图象如图所示,则k的取值范围是()A.k≤1 B.k≥1 C.k<1 D.0<k<12.已知,则()A.1 B.2 C.4 D.83.下列命题正确的是()A.三点确定一个圆 B.圆中平分弦的直径必垂直于弦C.矩形一定有外接圆 D.三角形的内心是三角形三条中线的交点4.在平面直角坐标系中,对于二次函数,下列说法中错误的是()A.的最小值为1B.图象顶点坐标为,对称轴为直线C.当时,的值随值的增大而增大,当时,的值随值的增大而减小D.当时,的值随值的增大而减小,当时,的值随值的增大而增大5.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.通过抛掷一枚均匀的硬币确定谁先发球的比赛规则是不公平的C.“367人中至少有2人生日相同”是必然事件D.四张分别画有等边三角形、平行四边形、菱形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形的概率是.6.一个不透明的盒子中装有5个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大7.有三张正面分别标有数字-2,3,4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A. B. C. D.8.已知抛物线(其中是常数,)的顶点坐标为.有下列结论:①若,则;②若点与在该抛物线上,当时,则;③关于的一元二次方程有实数解.其中正确结论的个数是()A. B. C. D.9.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是(

)A.2 B.1 C.32-10.已知⊙O的半径为3cm,线段OA=5cm,则点A与⊙O的位置关系是()A.A点在⊙O外 B.A点在⊙O上 C.A点在⊙O内 D.不能确定11.已知关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是().A.k<1 B.k≤1 C.k≤1且k≠0 D.k<1且k≠012.在△ABC中,∠C=90°,AB=12,sinA=,则BC等于()A. B.4 C.36 D.二、填空题(每题4分,共24分)13.二次函数的图象如图所示,给出下列说法:①;②方程的根为,;③;④当时,随值的增大而增大;⑤当时,.其中,正确的说法有________(请写出所有正确说法的序号).14.如图,是某公园一圆形喷水池,在池中心竖直安装一根水管OA=1.25m,A处是喷头,水流在各个方向沿形状相同的抛物线落下,水落地后形成一个圆,圆心为O,直径为线段CB.建立如图所示的平面直角坐标系,若水流路线达到最高处时,到x轴的距离为2.25m,到y轴的距离为1m,则水落地后形成的圆的直径CB=_____m.15.如图是由一些完全相同的小正方体组成的几何体的主视图、俯视图和左视图,则组成这个几何体的小正方体的个数是___________个.16.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是、,且,则队员身高比较整齐的球队是_____.17.已知和时,多项式的值相等,则m的值等于______.18.如图,在正方形ABCD中,点E在BC边上,且BC=3BE,AF平分∠DAE,交DC于点F,若AB=3,则点F到AE的距离为___________.三、解答题(共78分)19.(8分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.(1)请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?20.(8分)如图,直线y=﹣x+2与反比例函数(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.21.(8分)将如图所示的牌面数字1、2、3、4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是奇数的概率是;(2)从中随机抽出两张牌,两张牌牌面数字的和是6的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用树状图或列表的方法求组成的两位数恰好是3的倍的概率.22.(10分)如图l,在中,,,于点,是线段上的点(与,不重合),,,连结,,,.(1)求证:;(2)如图2,若将绕点旋转,使边在的内部,延长交于点,交于点.①求证:;②当为等腰直角三角形,且时,请求出的值.23.(10分)如图,破残的圆形轮片上,弦AB的垂直平分线交AB于C,交弦AB于D.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)若AB=24cm,CD=8cm,求(1)中所作圆的半径.24.(10分)(1)计算:|﹣2|+(π﹣3)1+2sin61°.(2)解下列方程:x2﹣3x﹣1=1.25.(12分)有一张长,宽的长方形硬纸片(如图1),截去四个全等的小正方形之后,折成无盖的纸盒(如图2).若纸盒的底面积为,求纸盒的高.26.解方程:(1)x2﹣1x+5=0(配方法)(2)(x+1)2=1x+1.

参考答案一、选择题(每题4分,共48分)1、D【分析】由二次函数y=kx2+2x+1的部分图象可知开口朝上以及顶点在x轴下方进行分析.【详解】解:由图象可知开口朝上即有0<k,又因为顶点在x轴下方,所以顶点纵坐标从而解得k<1,所以k的取值范围是0<k<1.故选D.【点睛】本题考查二次函数图像性质,根据开口朝上以及顶点在x轴下方分别代入进行分析.2、C【分析】根据比例的性质得出再代入要求的式子,然后进行解答即可.【详解】解:∵,∴a=4b,c=4d,∴,故选C.【点睛】此题考查了比例的性质,熟练掌握比例线段的性质是解题的关键,是一道基础题.3、C【分析】根据确定圆的条件、垂径定理、矩形的性质定理和三角形内心的定义,进行判断即可.【详解】∵不在一条直线上的三点确定一个圆,∴A错误;∵圆中平分弦(不是直径)的直径必垂直于弦,∴B错误;∵矩形一定有外接圆,∴C正确;∵三角形的内心是三角形三条角平分线的交点,∴D错误;故选:C.【点睛】本题主要考查真假命题的判断,掌握确定圆的条件、垂径定理、矩形的性质定理和三角形内心的定义,是解题的关键.4、C【分析】根据,可知该函数的顶点坐标为(2,1),对称轴为x=2,最小值为1,当x<2时,y随x的增大而减小,当x≥2时,y随x的增大而增大,进行判断选择即可.【详解】由题意可知,该函数当x<2时,y随x的增大而减小,当x≥2时,y随x的增大而增大,故C错误,所以答案选C.【点睛】本题考查的是一元二次函数顶点式的图像性质,能够根据顶点式得出其图像的特征是解题的关键.5、C【分析】利用随机事件和必然事件的定义对A、C进行判断;利用比较两事件的概率的大小判断游戏的公平性对B进行判断;利用中心对称的性质和概率公式对D进行判断.【详解】A、任意掷一枚质地均匀的硬币10次,可能有5次正面向上,所以A选项错误;B、通过抛掷一枚均匀的硬币确定谁先发球的比赛规则是公平的,所以B选项错误;C、“367人中至少有2人生日相同”是必然事件,所以C选项正确;D、四张分别画有等边三角形、平行四边形、菱形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形的概率是,所以D选项错误.故选:C.【点睛】本题考查了随机事件以及概率公式和游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.6、D【解析】根据可能性的大小,以及随机事件的判断方法,逐项判断即可.【详解】∵摸到红球是随机事件,∴选项A不符合题意;∵摸到白球是随机事件,∴选项B不符合题意;

∵红球比白球多,∴摸到红球比摸到白球的可能性大,∴选项C不符合题意,D符合题意.故选:D.【点睛】此题主要考查了可能性的大小,以及随机事件的判断,要熟练掌握,解答此题的关键是要明确:在一定条件下,可能发生也可能不发生的事件,称为随机事件.7、C【详解】画树状图得:

∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,

∴两次抽取的卡片上的数字之积为正偶数的概率是:.故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.8、C【分析】利用二次函数的性质一一进行判断即可得出答案.【详解】解:①抛物线(其中是常数,)顶点坐标为,,,,∴c>>0.故①小题结论正确;②顶点坐标为,点关于抛物线的对称轴的对称点为点与在该抛物线上,,,,当时,随的增大而增大,故此小题结论正确;③把顶点坐标代入抛物线中,得,一元二次方程中,,关于的一元二次方程无实数解.故此小题错误.故选:C.【点睛】本题是一道关于二次函数的综合性题目,具有一定的难度,需要学生熟练掌握二次函数的性质并能够熟练运用.9、B【分析】设AT交⊙O于点D,连结BD,根据圆周角定理可得∠ADB=90°,再由切线性质结合已知条件得△BDT和△ABD都为等腰直角三角形,由S阴=S△BDT计算即可得出答案.【详解】设AT交⊙O于点D,连结BD,如图:∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ATB=45°,BT是⊙O切线,∴△BDT和△ABD都为等腰直角三角形,∵AB=2,∴AD=BD=TD=22AB=2∴弓形AD的面积等于弓形BD的面积,∴S阴=S△BDT=12×2×2故答案为B.【点睛】本题考查了切线的性质,圆周角定理,等腰直角三角形的判定,解决本题的关键是利用等腰直角三角形的性质把阴影部分的面积转化为三角形的面积.10、A【详解】解:∵5>3∴A点在⊙O外故选A.【点睛】本题考查点与圆的位置关系.11、C【解析】分析:判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.关于x的一元二次方程kx2-2x+1=1有实数根,则△=b2-4ac≥1.详解:∵a=k,b=-2,c=1,∴△=b2-4ac=(-2)2-4×k×1=4-4k≥1,k≤1,∵k是二次项系数不能为1,k≠1,即k≤1且k≠1.故选C.点睛:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.12、B【分析】根据正弦的定义列式计算即可.【详解】解:在△ABC中,∠C=90°,sinA=,∴=,解得BC=4,故选B.【点睛】本题主要考查了三角函数正弦的定义,熟练掌握定义是解题的关键.二、填空题(每题4分,共24分)13、①②④【分析】根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab<0,①正确;∵二次函数y=ax2+bx+c的图象与x轴的交点坐标为(-1,0)、(3,0),∴方程x2+bx+c=0的根为x1=-1,x2=3,②正确;∵当x=1时,y<0,∴a+b+c<0,③错误;由图象可知,当x>1时,y随x值的增大而增大,④正确;当y>0时,x<-1或x>3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.14、1【分析】设y轴右侧的抛物线解析式为:y=a(x−1)2+2.21,将A(0,1.21)代入,求得a,从而可得抛物线的解析式,再令函数值为0,解方程可得点B坐标,从而可得CB的长.【详解】解:设y轴右侧的抛物线解析式为:y=a(x﹣1)2+2.21∵点A(0,1.21)在抛物线上∴1.21=a(0﹣1)2+2.21解得:a=﹣1∴抛物线的解析式为:y=﹣(x﹣1)2+2.21令y=0得:0=﹣(x﹣1)2+2.21解得:x=2.1或x=﹣0.1(舍去)∴点B坐标为(﹣2.1,0)∴OB=OC=2.1∴CB=1故答案为:1.【点睛】本题考查了二次函数在实际问题中的应用,明确二次函数的相关性质及正确的解方程,是解题的关键.15、【分析】根据几何体的三视图分析即可得出答案.【详解】通过主视图和左视图可知几何体有两层,由俯视图可知最底层有3个小正方体,结合主视图和左视图知第2层有1个小正方体,所以共4个小正方体.故答案为4【点睛】本题主要考查根据三视图判断组成几何体的小正方体的个数,掌握三视图的知识是解题的关键.16、乙【解析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量17、或1【分析】根据和时,多项式的值相等,得出,解方程即可.【详解】解:和时,多项式的值相等,,化简整理,得,,解得或1.故答案为或1.【点睛】本题考查多项式以及代数式求值,正确理解题意是解题的关键.18、【分析】延长AE交DC延长线于M,关键相似求出CM的长,求出AM长,根据角平分线性质得出比例式,代入求出即可.【详解】延长AE交DC延长线于M,

∵四边形ABCD是正方形,BC=3BE,BC=3,

∴AD=DC=BC=AB=3,∠D=90°,BE=1,CE=2,AB∥DC,

∴△ABE∽△MCE,

∴,

∴CM=2AB=6,

即DM=3+6=9,

由勾股定理得:,

∵AF平分∠DAE,

∴,

∴,

解得:,

∵AF平分∠DAE,∠D=90°,

∴点F到AE的距离=,

故答案为:.【点睛】本题考查了角平分线性质,勾股定理,相似三角形的性质和判定,正方形的性质等知识点,能正确作出辅助线是解此题的关键.三、解答题(共78分)19、(1)结果见解析;(2)不公平,理由见解析.【解析】判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平.20、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).【解析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.【详解】(1)∵直线y=-x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵点A(-1,3)在反比例函数y=上,∴k=-1×3=-3,∴反比例函数解析式为y=;(2)设点P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=AC×|xP−xA|=×3×|n+1|,S△BDP=BD×|xB−xP|=×1×|3−n|,∵S△ACP=S△BDP,∴×3×|n+1|=×1×|3−n|,∴n=0或n=−3,∴P(0,2)或(−3,5);(3)设M(m,0)(m>0),∵A(−1,3),B(3,−1),∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m−3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=−1+或m=−1−(舍),∴M(−1+,0)③当MB=AB时,(m−3)2+1=32,∴m=3+或m=3−(舍),∴M(3+,0)即:满足条件的M(−1+,0)或(3+,0).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.21、(1);(2);(3),.【分析】(1)根据概率的意义直接计算即可解答.

(2)找出两张牌牌面数字的和是6的情况再与所有情况相比即可解答.

(3)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【详解】解:(1)1,2,3,4共有4张牌,随意抽取一张为偶数的概率为=;(2)只有2+4=6,但组合一共有3+2+1=6,故概率为;(3)列表如下:第二次第一次1234111121314221222324331323334441424344其中恰好是3的倍数的有12,21,24,33,42五种结果.所以,P(3的倍数)=.故答案为:,.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)见解析;(2)①见解析;②【分析】(1)通过证明△EAB≌△FAB,即可得到BE=BF;

(2)①首先证明△AEB≌△AFC,由相似三角形的性质可得:∠EBA=∠FCA,进而可证明△AGC∽△KGB;②根据题意,可分类讨论求值即可.【详解】(1)∵AB=AC,AO⊥BC,

∴∠OAC=∠OAB=45°,

∴∠EAB=∠EAF-∠BAF=45°,

∴∠EAB=∠BAF=45°,

在△EAB和△FAB中,,∴△EAB≌△FAB(SAS),

∴BE=BF;

(2)①∵∠BAC=90°,∠EAF=90°,

∴∠EAB+∠BAF=∠BAF+∠FAC=90°,

∴∠EAB=∠FAC,

在△AEB和△AFC中,,∴△AEB≌△AFC(SAS),

∴∠EBA=∠FCA,

又∵∠KGB=∠AGC,

∴△AGC∽△KGB;

②当∠EBF=90°时,∵EF=BF,

∴∠FEB=∠EBF=90°(不符合题意),当∠BEF=90°,且EF=BF时,∴∠FEB=∠EBF=90°(不符合题意),当∠EFB=90°,且EF=BF时,如下图,∴∠FEB=∠FBE=45°,∵,,∴∠AFE=∠AEF=45°,∴∠AEB=∠AEF+∠FEB=45°+45°=90°,不妨设,则BF=EF=,BE=,在Rt△ABE中,∠AEB=90°,,BE,∴,∴,综上,.【点睛】本题考查了全等三角形的判定和性质、相似三角形的判定和性质、等腰直角三角形的性质,题目的综合性很强,最后一问要注意分类讨论,以防遗漏.23、(1)答案见解析;(2)13cm【分析】(1)根据垂径定理,即可求得圆心;(2)连接OA,根据垂径定理与勾股定理,即可求得圆的半径长.【详解】解:(1)连接BC,作线段BC的垂直平分线交直线CD与点O,以点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论