2023-2024学年湖北省鄂州鄂城区七校联考数学九年级第一学期期末调研试题含解析_第1页
2023-2024学年湖北省鄂州鄂城区七校联考数学九年级第一学期期末调研试题含解析_第2页
2023-2024学年湖北省鄂州鄂城区七校联考数学九年级第一学期期末调研试题含解析_第3页
2023-2024学年湖北省鄂州鄂城区七校联考数学九年级第一学期期末调研试题含解析_第4页
2023-2024学年湖北省鄂州鄂城区七校联考数学九年级第一学期期末调研试题含解析_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖北省鄂州鄂城区七校联考数学九年级第一学期期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.反比例函数的图象分布的象限是()A.第一、三象限 B.第二、四象限 C.第一象限 D.第二象限2.如图,中,点,分别是边,上的点,,点是边上的一点,连接交线段于点,且,,,则S四边形BCED()A. B. C. D.3.在正方形网格中,如图放置,则()A. B. C. D.4.二次函数图象的一部分如图所示,顶点坐标为,与轴的一个交点的坐标为(-3,0),给出以下结论:①;②;③若、为函数图象上的两点,则;④当时方程有实数根,则的取值范围是.其中正确的结论的个数为()A.1个 B.2个 C.3个 D.4个5.方程的解的个数为()A.0 B.1 C.2 D.1或26.如图,点,,都在上,,则等于()A. B. C. D.7.已知是实数,则代数式的最小值等于()A.-2 B.1 C. D.8.如图所示几何体的主视图是()A. B. C. D.9.在,,,则的值是()A. B. C. D.10.已知圆锥的底面半径是4,母线长是9,则圆锥侧面展开图的面积是()A. B. C. D.11.已知三地顺次在同-直线上,甲、乙两人均骑车从地出发,向地匀速行驶.甲比乙早出发分钟;甲到达地并休息了分钟后,乙追上了甲.甲、乙同时从地以各自原速继续向地行驶.当乙到达地后,乙立即掉头并提速为原速的倍按原路返回地,而甲也立即提速为原速的二倍继续向地行驶,到达地就停止.若甲、乙间的距离(米)与甲出发的时间(分)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙提速前的速度分别为米/分、米/分.B.两地相距米C.甲从地到地共用时分钟D.当甲到达地时,乙距地米12.一张圆心角为的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为4,已知,则扇形纸板和圆形纸板的半径之比是()A. B. C. D.二、填空题(每题4分,共24分)13.二次函数y=x2﹣2x+3图象的顶点坐标为_____.14.如图,点,分别在线段,上,若,,,,则的长为________.15.如图,将一张正方形纸片,依次沿着折痕,(其中)向上翻折两次,形成“小船”的图样.若,四边形与的周长差为,则正方形的周长为______.16.一个不透明的口袋中装有5个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,估计口袋中白球有__________个.17.如图,中,,,,将绕顶点逆时针旋转到处,此时线段与的交点恰好为的中点,则的面积为______.18.如图,圆锥的母线长OA=6,底面圆的半径为,一只小虫在圆线底面的点A处绕圆锥侧面一周又回到点A处,则小虫所走的最短路程为___________(结果保留根号)三、解答题(共78分)19.(8分)为争创文明城市,我市交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,并将两次收集的数据制成如下统计图表.类别人数百分比A686.8%B245b%Ca51%D17717.7%总计c100%根据以上提供的信息解决下列问题:(1)a=,b=c=(2)若我市约有30万人使用电瓶车,请分别计算活动前和活动后全市骑电瓶车“都不戴”安全帽的人数.(3)经过某十字路口,汽车无法继续直行只可左转或右转,电动车不受限制,现有一辆汽车和一辆电动车同时到达该路口,用画树状图或列表的方法求汽车和电动车都向左转的概率.20.(8分)如图,在中,连接,点,分别是的点(点不与点重合),,相交于点.(1)求,的长;(2)求证:~;(3)当时,请直接写出的长.21.(8分)不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),其中黄球2个,蓝球1个.若从中随机摸出一个球,摸到蓝球的概率是.(1)求口袋里红球的个数;(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率.22.(10分)如图已知直线与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.(1)求抛物线的解析式;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N点的坐标.23.(10分)某商品市场销售抢手,其进价为每件80元,售价为每件130元,每个月可卖出500件;据市场调查,若每件商品的售价每上涨1元,则每个月少卖2件(每件售价不能高于240元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的涨价多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的涨价多少元时,每个月的利润恰为40000元?根据以上结论,请你直接写出x在什么范围时,每个月的利润不低于40000元?24.(10分)先化简,再求值:,其中.25.(12分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.26.如图1,在△ABC中,AB=BC=20,cosA=,点D为AC边上的动点(点D不与点A,C重合),以D为顶点作∠BDF=∠A,射线DE交BC边于点E,过点B作BF⊥BD交射线DE于点F,连接CF.(1)求证:△ABD∽△CDE;(2)当DE∥AB时(如图2),求AD的长;(3)点D在AC边上运动的过程中,若DF=CF,则CD=.

参考答案一、选择题(每题4分,共48分)1、A【解析】先根据反比例函数的解析式判断出k的符号,再根据反比例函数的性质即可得出结论.【详解】解:∵反比例函数y=中,k=2>0,

∴反比例函数y=的图象分布在一、三象限.

故选:A.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时,反比例函数图象的两个分支分别位于一三象限是解答此题的关键.2、B【分析】由,,求得GE=4,由可得△ADG∽△ABH,△AGE∽△AHC,由相似三角形对应成比例可得,得到HC=5,再根据相似三角形的面积比等于相似比的平方可得,S△ABC=40.5,再减去△ADE的面积即可得到四边形BCED的面积.【详解】解:∵,,∴GE=4∵∴△ADG∽△ABH,△AGE∽△AHC∴即,解得:HC=6∵DG:GE=2:1∴S△ADG:S△AGE=2:1∵S△ADG=12∴S△AGE=6,S△ADE=S△ADG+S△AGE=18∵∴△ADE∽△ABC∴S△ADE:S△ABC=DE2:BC2解得:S△ABC=40.5S四边形BCED=S△ABC-S△ADE=40.5-18=22.5故答案选:B.【点睛】本题考查相似三角形的性质和判定.3、B【分析】依据正切函数的定义:正切函数是直角三角形中,对边与邻边的比值叫做正切.由中,,求解可得.【详解】解:在中,,,则,故选:B.【点睛】本题主要考查解直角三角形,解题的关键是掌握正切函数的定义.4、D【分析】由二次函数的图象可知,再根据对称轴为x=-1,得出b=2a<0,进而判断①,当x=-2时可判断②正确,然后根据抛物线的对称性以及增减性可判断③,再根据方程的根与抛物线与x交点的关系可判断④.【详解】解:∵抛物线开口向下,交y轴正半轴∴∵抛物线对称轴为x=-1,∴b=2a<0∴①正确;当x=-2时,位于y轴的正半轴故②正确;点的对称点为∵当时,抛物线为增函数,∴③正确;若当时方程有实数根,则需与x轴有交点则二次函数向下平移的距离即为t的取值范围,则的取值范围是,④正确.故选:D.【点睛】本题考查的知识点是二次函数图象及其性质,熟悉二次函数的图象上点的坐标特征以及求顶点坐标的公式是解此题额关键.5、C【解析】根据一元二次方程根的判别式,求出△的值再进行判断即可.【详解】解:∵x2=0,

∴△=02-4×1×0=0,∴方程x2=0有两个相等的实数根.故选C【点睛】本题考查的是一元二次方程根的判别式,当△>0时方程有两个不相等的实数根,△=0时方程有两个相等的实数根,△<0时方程没有实数根.6、C【分析】连接OC,根据等边对等角即可得到∠B=∠BCO,∠A=∠ACO,从而求得∠ACB的度数,然后根据圆周角定理即可求解.【详解】连接OC.∵OB=OC,∴∠B=∠BCO,同理,∠A=∠ACO,∴∠ACB=∠A+∠B=40°,∴∠AOB=2∠ACB=80°.故选:C.【点睛】本题考查了圆周角定理,正确作出辅助线,求得∠ACB的度数是关键.7、C【分析】将代数式配方,然后利用平方的非负性即可求出结论.【详解】解:====∵∴∴代数式的最小值等于故选C.【点睛】此题考查的是利用配方法求最值,掌握完全平方公式是解决此题的关键.8、C【解析】根据主视图的定义即可得出答案.【详解】从正面看,共有两列,第一列有两个小正方形,第二列有一个小正方形,在下方,只有选项C符合故答案选择C.【点睛】本题考查的是三视图,比较简单,需要熟练掌握三视图的画法.9、B【分析】根据互余两角三角函数的关系:sin2A+sin2B=1解答.【详解】∵在Rt△ABC中,∠C=90,∴∠A+∠B=90,∴sin2A+sin2B=1,sinA>0,∵sinB=,∴sinA==.故选B.【点睛】本题考查互余两角三角函数的关系.10、D【分析】先根据圆的周长公式计算出圆锥的底面周长,然后根据扇形的面积公式,即可求出圆锥侧面展开图的面积.【详解】解:圆锥的底面周长为:2×4=,则圆锥侧面展开图的面积是.故选:D.【点睛】此题考查的是求圆锥的侧面面积,掌握圆的周长公式和扇形的面积公式是解决此题的关键.11、C【分析】设出甲、乙提速前的速度,根据“乙到达B地追上甲”和“甲、乙同时从B出发,到相距900米”建立二元一次方程组求出速度即可判断A,然后根据乙到达C的时间求A、C之间的距离可判断B,根据乙到达C时甲距C的距离及此时速度可计算时间判断C,根据乙从C返回A时的速度和甲到达C时乙从C出发的时间即可计算路程判断出D.【详解】A.设甲提速前的速度为米/分,乙提速前的速度为米/分,由图象知,当乙到达B地追上甲时,有:,化简得:,当甲、乙同时从B地出发,甲、乙间的距离为900米时,有:,化简得:,解方程组:,得:,故甲提速前的速度为300米/分,乙提速前的速度为400米/分,故选项A正确;B.由图象知,甲出发23分钟后,乙到达C地,则A、C两地相距为:(米),故选项B正确;C.由图象知,乙到达C地时,甲距C地900米,这时,甲提速为(米/分),则甲到达C地还需要时间为:(分钟),所以,甲从A地到C地共用时为:(分钟),故选项C错误;D.由题意知,乙从C返回A时,速度为:(米/分钟),当甲到达C地时,乙从C出发了2.25分钟,此时,乙距A地距离为:(米),故选项D正确.故选:C.【点睛】本题为方程与函数图象的综合应用,正确分析函数图象,明确特殊点的意义是解题的关键.12、A【分析】分别求出扇形和圆的半径,即可求出比值.【详解】如图,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=4,∵=,∴OB=AB=3,∴CO=7由勾股定理得:OD==r1;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=4,∴MC=MB==r2∴扇形和圆形纸板的半径比是:=故选:A.【点睛】本题考查了正方形性质、圆内接四边形性质;解此题的关键是求出扇形和圆的半径,题目比较好,难度适中.二、填空题(每题4分,共24分)13、(1,2).【分析】先把此二次函数右边通过配方写成顶点式得:y=(x-1)2+2,从而求解.【详解】解:y=x2﹣2x+3y=x2﹣2x+1+2y=(x-1)2+2,所以,其顶点坐标是(1,2).故答案为(1,2)【点睛】本题考查将二次函数一般式化为顶点式求二次函数的顶点坐标,正确计算是本题的解题关键.14、7.1【分析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:,,即,解得,,,故答案为:7.1.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.15、1【分析】由正方形的性质得出△ABD是等腰直角三角形,由EF∥BD,得出△AEF是等腰直角三角形,由折叠的性质得△AHG是等腰直角三角形,△BEH与△DFG是全等的等腰直角三角形,则GF=DF=BE=EH=1,设AB=x,则BD=x,EF=(x-1),AH=AG=x-2,HG=(x-2),由四边形BEFD与△AHG的周长差为5-2列出方程解得x=4,即可得出结果.【详解】∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∵EF∥BD,∴△AEF是等腰直角三角形,由折叠的性质得:△AHG是等腰直角三角形,△BEH与△DFG是全等的等腰直角三角形,∴GF=DF=BE=EH=1,设AB=x,则BD=x,EF=(x-1),AH=AG=x-2,HG=(x-2),∵四边形BEFD与△AHG的周长差为5-2,∴x+(x-1)+2-[2(x-2)+(x-2)]=5-2,解得:x=4,∴正方形ABCD的周长为:4×4=1,故答案为:1.【点睛】本题考查了折叠的性质、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握折叠与正方形的性质以及等腰直角三角形的性质是解题的关键.16、15【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴,解得x=15,检验:x=15是原方程的根,∴白球的个数为15个,故答案为:15.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出和分式方程的解法解题关键.17、【分析】A1B1与OA相交于点E,作B1H⊥OB于点H,如图,利用勾股定理得到AB=1,再根据直角三角形斜边上的中线性质得OD=AD=DB,则∠1=∠A,接着根据旋转的性质得∠3=∠2,A1B1=AB=1,OB1=OB=8,OA1=OA=2,易得∠2+∠1=90°,所以∠OEB1=90°,于是可利用面积法计算出OE,再由四边形OEB1H为矩形得到B1H=OE,根据三角形的面积公式即可得出结论.【详解】A1B1与OA相交于点E,作B1H⊥OB于点H,如图,∵∠AOB=90°,AO=2,BO=8,∴AB1.∵D为AB的中点,∴OD=AD=DB,∴∠1=∠A.∵△AOB绕顶点O逆时针旋转得到△A1OB1,∴∠3=∠2,A1B1=AB=1,OB1=OB=8,OA1=OA=2.∵∠3+∠A=90°,∴∠2+∠1=90°,∴∠OEB1=90°.∵OE•A1B1OB1•OA1,∴OE.∵∠B1EO=∠EOB=∠OHB1=90°,∴四边形OEB1H为矩形,∴B1H=OE,∴的面积===.故答案为:.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和矩形的判定与性质.18、6【分析】利用圆锥的底面周长等于侧面展开图的弧长可得圆锥侧面展开图的圆心角,求出侧面展开图中两点间的距离即为最短距离.【详解】∵底面圆的半径为,∴圆锥的底面周长为2×=3,设圆锥的侧面展开图的圆心角为n.∴,解得n=90°,如图,AA′的长就是小虫所走的最短路程,∵∠O=90°,OA′=OA=6,∴AA′=.故答案为:6.【点睛】本题考查了圆锥的计算,考查圆锥侧面展开图中两点间距离的求法;把立体几何转化为平面几何来求是解决本题的突破点.三、解答题(共78分)19、(1)10,24.5,1000;(2)活动前5.31万人,活动后2.67万人;(3)p=【分析】(1)用表格中的A组的人数除以其百分比,得到总人数c,运用“百分比=人数÷总人数”及其变形公式即可求出a、b的值;(2)先把活动后各组人数相加,求出活动后调查的样本容量,再运用“百分比=人数÷总人数”求出活动前和活动后全市骑电瓶车“都不戴”安全帽的百分比,再用样本估计总体;(3)先画树状图展示所有6种等可能的结果数,再求汽车和电动车都向左转的概率.【详解】(1)∵,∴,,∴;(2)∵活动后调查了896+702+224+178=2000人,“都不戴”安全帽的占,∴由此估计活动后全市骑电瓶车“都不戴”安全帽的总人数:30万=2.67(万人);同理:估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万万人;答:估计活动前和活动后全市骑电瓶车“都不戴”安全帽的总人数分别为5.31万人和2.67万人;(3)画树状图:∴共有6种等可能的结果数,汽车和电动车都向左转的只有1种,∴汽车和电动车都向左转的概率为.【点睛】本题综合考查了概率统计内容,读懂统计图,了解用样本估计总体,掌握概率公式是解决问题的关键.20、(1)AD=10,BD=10;(2)见解析;(3)AG=.【分析】(1)由可证明△ABC∽△DAC,通过相似比即可求出AD,BD的长;(2)由(1)可证明∠B=∠DAB,再根据已知条件证明∠AFC=∠BEF即可;(3)过点C作CH∥AB,交AD的延长线于点H,根据平行线的性质得到,计算出CH和AH的值,由已知条件得到≌,设AG=x,则AF=15-x,HG=18-x,再由平行线的性质得到,表达出即可解出x,即AG的值.【详解】解:(1)∵,∴,又∵∠ACB=∠DCA,∴△ABC∽△DAC,∴,即,解得:CD=8,AD=10,∴BD=BC-CD=18-8=10,∴AD=10,BD=10;(2)由(1)可知,AD=BD=10,∴∠B=∠DAB,∵∠AFE=∠B+∠BEF,∴∠AFC+∠CFE=∠B+∠BEF,∵,∴∠AFC=∠BEF,又∵∠B=∠DAB,∴~;(3)如图,过点C作CH∥AB,交AD的延长线于点H,∴,即,解得:CH=12,HD=8,∴AH=AD+HD=18,若,则≌;∴BF=AG,设AG=x,则AF=15-x,HG=18-x,∵CH∥AB,∴,即,解得:,(舍去)∴AG=.【点睛】本题考查了相似三角形的判定与性质以及平行线分线段成比例,解题的关键是熟悉相似三角形的判定,并灵活作出辅助线.21、(1)1;(2)见解析,【分析】(1)设红球有x个,根据题意得:;(2)列表,共有12种等可能性的结果,其中两次摸到的球恰是一黄一蓝的情况有4种.【详解】解:(1)设红球有x个,根据题意得:,解得:x=1,经检验x=1是原方程的根.则口袋中红球有1个(2)列表如下:

红黄黄蓝红---(黄,红)(黄,红)(蓝,红)黄(红,黄)---(黄,黄)(蓝,黄)黄(红,黄)(黄,黄)---(蓝,黄)蓝(红,蓝)(黄,蓝)(黄,蓝)---由上表可知,共有12种等可能性的结果,其中两次摸到的球恰是一黄一蓝的情况有4种,则P=【点睛】考核知识点:用列举法求概率.列表是关键.22、(1);(2),P(,);(3)N(3,0)或N(2+,1+)或N(5,6)或N(,1﹣).【分析】(1)将点代入,求出,将点代入,即可求函数解析式;(2)如图,过作轴,交于,求出的解析式,设,表示点坐标,表示长度,利用,建立二次函数模型,利用二次函数的性质求最值即可,(3)可证明△MAD是等腰直角三角形,由△QMN与△MAD相似,则△QMN是等腰直角三角形,设①当MQ⊥QN时,N(3,0);②当QN⊥MN时,过点N作NR⊥x轴,过点M作MS⊥RN交于点S,由(AAS),建立方程求解;③当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点作R∥x轴,与过M点的垂线分别交于点S、R;可证△MQR≌△QNS(AAS),建立方程求解;④当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;可证△MNR≌△NQS(AAS),建立方程求解.【详解】解:(1)将点代入,∴,将点代入,解得:,∴函数解析式为;(2)如图,过作轴,交于,设为,因为:所以:,解得:,所以直线AB为:,设,则,所以:,所以:,当,,此时:.(3)∵,∴,∴△MAD是等腰直角三角形.∵△QMN与△MAD相似,∴△QMN是等腰直角三角形,设①如图1,当MQ⊥QN时,此时与重合,N(3,0);②如图2,当QN⊥MN时,过点N作NR⊥x轴于,过点M作MS⊥RN交于点S.∵QN=MN,∠QNM=90°,∴(AAS),∴,∴,,∴,∴;③如图3,当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点作R∥x轴,与过点的垂线分别交于点S、R;∵QN=MQ,∠MQN=90°,∴△MQR≌△QNS(AAS),,,∴,∴t=5,(舍去负根)∴N(5,6);④如图4,当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;∵QN=MN,∠MNQ=90°,∴△MNR≌△NQS(AAS),∴SQ=RN,∴,∴.,∴,∴;综上所述:或或N(5,6)或.【点睛】本题考查二次函数的综合;熟练掌握二次函数的图象及性质,数形结合解题是关键.23、(1)y=﹣2x2+400x+25000,0<x≤1,且x为正整数;(2)件商品的涨价100元时,每个月可获得最大利润,最大的月利润是45000元;(3)每件商品的涨价为50元时,每个月的利润恰为40000元;当50≤x≤1,且x为正整数时,每个月的利润不低于40000元【分析】(1)设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元,每件商品的售价每上涨1元,则每个月少卖2件,根据月利润=单件利润×数量,则可以得到月销售利润y的函数关系式;(2)由月利润的函数表达式y=﹣2x2+400x+25000,配成顶点式即可;(3)当月利润y=40000时,求出x的值,结合(1)中的取值范围即可得.【详解】解:(1)设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元,由题意得:y=(130﹣80+x)(500﹣2x)=﹣2x2+400x+25000∵每件售价不能高于240元∴130+x≤240∴x≤1∴y与x的函数关系式为y=﹣2x2+400x+25000,自变量x的取值范围为0<x≤1,且x为正整数;故答案为:y=﹣2x2+400x+25000;0<x≤1.(2)∵y=﹣2x2+400x+25000=﹣2(x﹣100)2+45000∴当x=100时,y有最大值45000元;∴每件商品的涨价100元时,每个月可获得最大利润,最大的月利润是45000元,故答案为:每件商品的涨价100元时,月利润最大是45000元;(3)令y=40000,得:﹣2x2+400x+25000=40000解得:x1=50,x2=150∵0<x≤1∴x=50,即每件商品的涨价为50元时,每个月的利润恰为40000元,由二次函数的性质及问题的实际意义,可知当50≤x≤1,且x为正整数时,每个月的利润不低于40000元.∴每件商品的涨价为50元时,每个月的利润恰为40000元;当50≤x≤1,且x为正整数时,每个月的利润不低于40000元,故答案为:每件商品的涨价为50元;50≤x≤1;【点睛】本题考查了二次函数的实际应用,方案设计类营销问题,二次函数表达式的求解,二次函数顶点式求最值问题,由函数值求自变量的值,掌握二次函数的实际应用是解题的关键.24、原式=.【分析】先把分式进行化简,得到最简代数式,然后根据特殊角的三角函数值,求出x的值,把x代入计算,即可得到答案.【详解】解:原式;当时,原式.【点睛】本题考查了特殊值的三角函数值,分式的化简求值,以及分式的加减混合运算,解题的关键是熟练掌握运算法则进行运算.25、(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.【解析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论