版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年甘肃省武威第九中学数学九上期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.等于()A. B.2 C.3 D.2.已知二次函数,当时,随增大而增大,当时,随增大而减小,且满足,则当时,的值为()A. B. C. D.3.下列四个点中,在反比例函数y=的图象上的是()A.(﹣3,﹣2) B.(3,2) C.(﹣2,3) D.(﹣2,﹣3)4.已知三角形的面积一定,则它底边a上的高h与底边a之间的函数关系的图象大致是()A. B. C. D.5.如图,将绕点A按顺时针旋转一定角度得到,点B的对应点D恰好落在BC边上.若,则CD的长为()A.1 B. C. D.26.如图,在平面直角坐标系中,点的坐标为,那么的值是()A. B. C. D.7.如图,⊙O中弦AB=8,OC⊥AB,垂足为E,如果CE=2,那么⊙O的半径长是()A.4 B.5 C.6 D.1°8.若关于x的一元二次方程的两根是,则的值为()A. B. C. D.9.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个 B.3个 C.2个 D.1个10.将抛物线y=x2﹣2向上平移1个单位后所得新抛物线的表达式为()A.y=﹣1 B.y=﹣3 C.y=﹣2 D.y=﹣2二、填空题(每小题3分,共24分)11.一元二次方程x(x﹣3)=3﹣x的根是____.12.如图,在等边△ABC中,AB=8cm,D为BC中点.将△ABD绕点A.逆时针旋转得到△ACE,则△ADE的周长为_________cm.13.如图,在平面直角坐标系中,CO、CB是⊙D的弦,⊙D分别与轴、轴交于B、A两点,∠OCB=60º,点A的坐标为(0,1),则⊙D的弦OB的长为____________。14.在锐角中,=0,则∠C的度数为____.15.=___16.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果CD=4,那么AD•BD的值是_____.17.对于抛物线,下列结论:①抛物线的开口向下;②对称轴为直线;③顶点坐标为;④时,图像从左至右呈下降趋势.其中正确的结论是_______________(只填序号).18.如图,等边边长为2,分别以A,B,C为圆心,2为半径作圆弧,这三段圆弧围成的图形就是著名的等宽曲线——鲁列斯三角形,则该鲁列斯三角形的面积为___________.三、解答题(共66分)19.(10分)近日,国产航母山东舰成为了新晋网红,作为我国本世纪建造的第一艘真正意义上的国产航母,承载了我们太多期盼,促使我国在伟大复兴路上加速前行如图,山东舰在一次测试中,巡航到海岛A北偏东60°方向P处,发现在海岛A正东方向有一可疑船只B正沿BA方向行驶。山东舰经测量得出:可疑船只在P处南偏东45°方向,距P处海里。山东舰立即从P沿南偏西30°方向驶出,刚好在C处成功拦截可疑船只。求被拦截时,可疑船只距海岛A还有多少海里?(,结果精确到0.1海里)20.(6分)如图,二次函数y=﹣x2+x+3的图象与x轴交于点A、B(B在A右侧),与y轴交于点C.(1)求点A、B、C的坐标;(2)求△ABC的面积.21.(6分)计算:=_________。22.(8分)如图,直线y=x﹣2(k≠0)与y轴交于点A,与双曲线y=在第一象限内交于点B(3,b),在第三象限内交于点C.(1)求双曲线的解析式;(2)直接写出不等式x﹣2>的解集;(3)若OD∥AB,在第一象限交双曲线于点D,连接AD,求S△AOD.23.(8分)如图,点是线段上的任意一点(点不与点重合),分别以为边在直线的同侧作等边三角形和等边三角形,与相交于点,与相交于点.(1)求证:;(2)求证:;(3)若的长为12cm,当点在线段上移动时,是否存在这样的一点,使线段的长度最长?若存在,请确定点的位置并求出的长;若不存在,请说明理由.24.(8分)如图,抛物线的图象过点.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得?若存在,请求出点M的坐标;若不存在,请说明理由.25.(10分)(特例感知)(1)如图①,∠ABC是⊙O的圆周角,BC为直径,BD平分∠ABC交⊙O于点D,CD=3,BD=4,则点D到直线AB的距离为.(类比迁移)(2)如图②,∠ABC是⊙O的圆周角,BC为⊙O的弦,BD平分∠ABC交⊙O于点D,过点D作DE⊥BC,垂足为E,探索线段AB、BE、BC之间的数量关系,并说明理由.(问题解决)(3)如图③,四边形ABCD为⊙O的内接四边形,∠ABC=90°,BD平分∠ABC,BD=7,AB=6,则△ABC的内心与外心之间的距离为.26.(10分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
参考答案一、选择题(每小题3分,共30分)1、A【分析】先计算60度角的正弦值,再计算加减即可.【详解】故选A.【点睛】本题考查了特殊角的三角函数值的计算,能够熟练掌握特殊角的三角函数值是解题的关键.2、A【分析】根据,求得m=3或−1,根据当x<−1时,y随x增大而增大,当x>0时,y随x增大而减小,从而判断m=-1符合题意,然后把x=0代入解析式求得y的值.【详解】解:∵,∴m=3或−1,∵二次函数的对称轴为x=m,且二次函数图象开口向下,又∵当x<−1时,y随x增大而增大,当x>0时,y随x增大而减小,∴−1≤m≤0∴m=-1符合题意,∴二次函数为,当x=0时,y=1.故选:A【点睛】本题考查了二次函数的性质,根据题意确定m=-1是解题的关键.3、C【分析】先分别计算四个点的横、纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】解:∵﹣3×(﹣2)=6,3×2=6,﹣2×3=﹣6,﹣2×(﹣3)=6,∴点(﹣2,3)在反比例函数y=的图象上.故选:C.【点睛】此题考查的是判断在反比例函数图象上的点,掌握点的横、纵坐标之积等于反比例函数的比例系数即可判断该点在反比例函数图象上是解决此题的关键.4、D【解析】先写出三角形底边a上的高h与底边a之间的函数关系,再根据反比例函数的图象特点得出.【详解】解:已知三角形的面积s一定,
则它底边a上的高h与底边a之间的函数关系为S=ah,即;
该函数是反比例函数,且2s>0,h>0;
故其图象只在第一象限.
故选:D.【点睛】本题考查反比例函数的图象特点:反比例函数的图象是双曲线,与坐标轴无交点,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.5、D【分析】由直角三角形的性质可得AB=2,BC=2AB=4,由旋转的性质可得AD=AB,可证△ADB是等边三角形,可得BD=AB=2,即可求解.【详解】解:∵AC=,∠B=60°,∠BAC=90°
∴AB=2,BC=2AB=4,
∵Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,
∴AD=AB,且∠B=60°
∴△ADB是等边三角形
∴BD=AB=2,
∴CD=BC-BD=4-2=2
故选:D.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,熟练运用旋转的性质是本题的关键.6、D【分析】过A作AB⊥x轴于点B,在Rt△AOB中,利用勾股定理求出OA,再根据正弦的定义即可求解.【详解】如图,过A作AB⊥x轴于点B,∵A的坐标为(4,3)∴OB=4,AB=3,在Rt△AOB中,∴故选:D.【点睛】本题考查求正弦值,利用坐标求出直角三角形的边长是解题的关键.7、B【分析】连接OA,由于半径OC⊥AB,利用垂径定理可知AB=2AE,设OA=OC=x,在Rt△AOE中利用勾股定理易求OA.【详解】解:连接OA,∵OC⊥AB,∴AB=2AE=8,∴AE=4,设OA=OC=x,则OE=OC-CE=x-2在Rt△AOE由勾股定理得:即:,解得:,故选择:B【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8、A【分析】利用一元二次方程的根与系数的关系即可求解.【详解】由题意可得:则故选:A.【点睛】本题考查了一元二次方程的根与系数的关系,对于一般形式,设其两个实数根分别为,则方程的根与系数的关系为:.9、C【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;
由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧,y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.
故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.10、A【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:将抛物线y=x2﹣2向上平移1个单位后所得新抛物线的表达式为y=x2﹣2+1,即y=x2﹣1.故选:A.【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.二、填空题(每小题3分,共24分)11、x1=3,x2=﹣1.【分析】整体移项后,利用因式分解法进行求解即可.【详解】x(x﹣3)=3﹣x,x(x﹣3)-(3﹣x)=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1,故答案为x1=3,x2=﹣1.12、12【分析】由旋转可知,由全等的性质及等边三角形的性质可知是等边三角形,利用勾股定理求出AD长,可得△ADE的周长.【详解】解:△ABC是等边三角形,D为BC中点,AB=8在中,根据勾股定理得由旋转可知是等边三角形所以△ADE的周长为cm.故答案为:【点睛】本题主要考查了等边三角形的判定和性质,灵活利用等边三角形的性质是解题的关键.13、【分析】首先连接AB,由∠AOB=90°,可得AB是直径,又由∠OAB=∠OCB=60°,然后根据含30°的直角三角形的性质,求得AB的长,然后根据勾股定理,求得OB的长.【详解】解:连接AB,
∵∠AOB=90°,
∴AB是直径,
∵∠OAB=∠OCB=60°,
∴∠ABO=30°,
∵点A的坐标为(0,1),
∴OA=1,
∴AB=2OA=2,
∴OB=,故选:C.【点睛】此题考查了圆周角定理以及勾股定理.注意准确作出辅助线是解此题的关键.14、75°【分析】由非负数的性质可得:,可求,从而利用三角形的内角和可得答案.【详解】解:由题意,得sinA=,cosB=,解得∠A=60°,∠B=45°,∠C=180°﹣∠A﹣∠B=75°,故答案为:75°.【点睛】本题考查了非负数的性质:偶次方、三角形的内角和定理,特殊角的三角函数值,掌握以上知识是解题的关键.15、【分析】原式利用特殊角的三角函数值计算即可得到结果.【详解】解:原式==.故答案为:.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16、1【分析】先由角的互余关系,导出∠DCA=∠B,结合∠BDC=∠CDA=90°,证明△BCD∽△CAD,利用相似三角形的性质,列出比例式,变形即可得答案.【详解】解:∵∠ACB=90°,CD⊥AB于点D,∴∠BCD+∠DCA=90°,∠B+∠BCD=90°∴∠DCA=∠B,又∵∠BDC=∠CDA=90°,∴△BCD∽△CAD,∴BD:CD=CD:AD,∴AD•BD=CD2=42=1,故答案为:1.【点睛】本题主要考查相似三角形的判定和性质,解决本题的关键是要熟练掌握相似三角形的判定和性质.17、①③④【分析】根据二次函数的性质对各小题分析判断即可得解.【详解】解:在抛物线中,∵,∴抛物线的开口向下;①正确;∴对称轴为直线;②错误;∴顶点坐标为;③正确;∴时,图像从左至右呈下降趋势;④正确;∴正确的结论有:①③④;故答案为:①③④.【点睛】本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性.18、【分析】求出一个弓形的面积乘3再加上△ABC的面积即可.【详解】过A点作AD⊥BC,∵△ABC是等边三角形,边长为2,∴AC=BC=2,CD=BC=1∴AD=∴弓形面积=.故答案为:【点睛】本题考查的是阴影部分的面积,掌握扇形的面积计算及等边三角形的面积计算是关键.三、解答题(共66分)19、被拦截时,可疑船只距海岛A还有57.7海里.【分析】过点P作于点D,在中,利用等腰直角三角形性质求出PD的长,在中,求出PC的长,再求的.可得.【详解】解:过点P作于点D由题意可知,在中,∴在中,∴又∴∴∴(海里)即被拦截时,可疑船只距海岛A还有57.7海里.【点睛】此题考查了解直角三角形的应用,熟练掌握直角三角形中三角函数的运用是解题的关键.20、(1)点A的坐标为(﹣1,0),点B的坐标为(4,0),点C的坐标为(0,3);(2)【分析】(1)根据题目中的函数解析式可以求得点A、B、C的坐标;(2)根据(1)中点A、点B、点C的坐标可以求得△ABC的面积.【详解】解:(1)∵二次函数y=x2+x+3=(x﹣4)(x+1),∴当x=0时,y=3,当y=0时,x1=4,x2=﹣1,即点A的坐标为(﹣1,0),点B的坐标为(4,0),点C的坐标为(0,3);(2)∵点A的坐标为(﹣1,0),点B的坐标为(4,0),点C的坐标为(0,3),∴AB=5,OC=3,∴△ABC的面积是:=,即△ABC的面积是.【点睛】本题考查的是二次函数与x轴的交点,分别令x、y为0,即可求出函数与坐标轴的交点,进而求解三角形的面积.21、4【解析】根据二次根式除法法则计算即可求解.【详解】解:原式===4.故答案为:4.【点睛】本题考查二次根式的除法运算,注意二次根式的运算结果要化为最简二次根式.在二次根式的混合运算中,解题关键是能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径.22、(1)y=;(2)﹣1<x<0或x>3;(3)【分析】(1)把点B(3,b)代入y=x﹣2,得到B的坐标,然后根据待定系数法即可求得双曲线的解析式;(2)解析式联立求得C的坐标,然后根据图象即可求得;(3)求得直线OD的解析式,然后解析式联立求得D的坐标,根据三角形面积公式求得即可.【详解】(1)∵点B(3,b)在直线y=x﹣2(k≠0)上,∴b=3﹣2=1,∴B(3,1),∵双曲线y=经过点B,∴k=3×1=3,∴双曲线的解析式为y=;(2)解得或,∴C(﹣1,﹣3),由图象可知,不等式x﹣2>的解集是﹣1<x<0或x>3;(3)∵OD∥AB,∴直线OD的解析式为y=x,解,解得或,∴D(,),由直线y=x﹣2可知A(0,﹣2),∴OA=2,∴S△AOD==.【点睛】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点坐标同时满足反比例函数与一次函数解析式.解决问题的关键是求得交点坐标.23、(1)见解析;(2)见解析;(1)存在,请确定C点的位置见解析,MN=1.【分析】(1)根据题意证明△DCB≌△ACE即可得出结论;(2)由题中条件可得△ACE≌△DCB,进而得出△ACM≌△DCN,即CM=CN,△MCN是等边三角形,即可得出结论;(1)可先假设其存在,设AC=x,MN=y,进而由平行线分线段成比例即可得出结论.【详解】解:(1)∵△ACD与△BCE是等边三角形,∴AC=CD,CE=BC,
∴∠ACE=∠BCD,
在△ACE与△DCB中,,∴△ACE≌△DCB(SAS),∴DB=AE;(2)∵△ACE≌△DCB,∴∠CAE=∠BDC,
在△ACM与△DCN中,,∴△ACM≌△DCN,
∴CM=CN,
又∵∠MCN=180°-60°-60°=60°,
∴△MCN是等边三角形,
∴∠MNC=∠NCB=60°
即MN∥AB;(1)解:假设符合条件的点C存在,设AC=x,MN=y,
∵MN∥AB,∴,即,,当x=6时,ymax=1cm,即点C在点A右侧6cm处,且MN=1.【点睛】本题主要考查了全等三角形的判定及性质以及平行线分线段成比例的性质和二次函数问题,能够将所学知识联系起来,从而熟练求解.24、(1);(2)存在,点,周长为:;(3)存在,点M坐标为【分析】(1)由于条件给出抛物线与x轴的交点,故可设交点式,把点C代入即求得a的值,减小计算量.(2)由于点A、B关于对称轴:直线对称,故有,则,所以当C、P、B在同一直线上时,最小.利用点A、B、C的坐标求AC、CB的长,求直线BC解析式,把代入即求得点P纵坐标.(3)由可得,当两三角形以PA为底时,高相等,即点C和点M到直线PA距离相等.又因为M在x轴上方,故有.由点A、P坐标求直线AP解析式,即得到直线CM解析式.把直线CM解析式与抛物线解析式联立方程组即求得点M坐标.【详解】解:(1)∵抛物线与x轴交于点∴可设交点式把点代入得:∴抛物线解析式为(2)在抛物线的对称轴上存在一点P,使得的周长最小.如图1,连接PB、BC∵点P在抛物线对称轴直线上,点A、B关于对称轴对称∵当C、P、B在同一直线上时,最小最小设直线BC解析式为把点B代入得:,解得:∴直线BC:∴点使的周长最小,最小值为.(3)存在满足条件的点M,使得.∵∴当以PA为底时,两三角形等高∴点C和点M到直线PA距离相等∵M在x轴上方,设直线AP解析式为解得:∴直线∴直线CM解析式为:解得:(即点C),∴点M坐标为【点睛】考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M在x轴上方,无需分类讨论,解法较常规而简单.25、(1)(2)AB+BC=2BE(3)【分析】(1)由AB是直径可得∠BDC=90°,根据勾股定理可得BC=5过点D分别作DE⊥BC于点E,DF⊥BA于点F由BD平分∠ABC可得DE=DF=,DF即为所求,(2)过点D分别作DE⊥BC于点E,DF⊥BA于点F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工业地产租赁合同示范文本(二零二五年度)6篇
- 2024长期合作运输合同
- 2024物联网农业技术研发合同
- 2024虚拟现实游戏内容制作与授权合同
- 2024年全民科学素质知识竞赛题库及答案(共60题)
- 2024装修合同注意事项及细节
- 动植物检验检疫学知到智慧树章节测试课后答案2024年秋北京工商大学
- 电子竞技专家聘用协议
- 汽车按揭购买合同样本
- 2024预算单位公务卡个性化定制服务协议3篇
- 承诺函(支付宝)
- FZ/T 81024-2022机织披风
- GB/T 24123-2009电容器用金属化薄膜
- 艾滋病梅毒乙肝实验室检测
- 国铁桥梁人行道支架制作及安装施工要点课件
- 领导科学全套精讲课件
- 粤教版地理七年级下册全册课件
- 小学科学苏教版六年级上册全册精华知识点(2022新版)
- 萎缩性胃炎共识解读
- 2022版义务教育语文课程标准(2022版含新增和修订部分)
- 精品金属线管布线施工工程施工方法
评论
0/150
提交评论