版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省镇江市镇江中学数学九上期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.对于反比例函数,下列说法错误的是()A.它的图象分别位于第二、四象限B.它的图象关于成轴对称C.若点,在该函数图像上,则D.的值随值的增大而减小2.若方程是关于的一元二次方程,则应满足的条件是()A. B. C. D.3.一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l上,且有一个公共顶点,则的度数是A. B. C. D.4.如图,将绕着点按顺时针方向旋转,点落在位置,点落在位置,若,则的度数是()A. B. C. D.5.圆的面积公式S=πR2中,S与R之间的关系是()A.S是R的正比例函数 B.S是R的一次函数C.S是R的二次函数 D.以上答案都不对6.方程x2-4=0的解是A.x=2 B.x=-2 C.x=±2 D.x=±47.如图,以(1,-4)为顶点的二次函数y=ax2+bx+c的图象与x轴负半轴交于A点,则一元二次方程ax2+bx+c=0的正数解的范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<68.关于的一元二次方程x2﹣2+k=0有两个相等的实数根,则k的值为()A.1 B.﹣1 C.2 D.﹣29.如图,在⊙中,半径垂直弦于,点在⊙上,,则半径等于()A. B. C. D.10.菱形具有而矩形不具有的性质是()A.对边相等 B.对角相等 C.对角线互相平分 D.对角线互相垂直二、填空题(每小题3分,共24分)11.如图,在四边形中,,,,.若,则______.12.如图,四边形中,,点在轴上,双曲线过点,交于点,连接.若,,则的值为__.13.如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第7个小三角形的面积为_________________14.已知x=1是一元二次方程x²+ax+b=0的一个根,则代数式a²+b²+2ab的值是____________.15.如图,在平面直角坐标系中,菱形的边在轴上,与交于点(4,2),反比例函数的图象经过点.若将菱形向左平移个单位,使点落在该反比例函数图象上,则的值为_____________.16.体育课上,小聪,小明,小智,小慧分别在点O处进行了一次铅球试投,铅球分别落在图中的点A,B,C,D处,则他们四人中,成绩最好的是______.17.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.18.若点A(m,n)是双曲线与直线的交点,则_________.三、解答题(共66分)19.(10分)已知关于x的一元二次方程x2+2x+m=1.(1)当m=3时,判断方程的根的情况;(2)当m=﹣3时,求方程的根.20.(6分)如图1,抛物线与轴交于点,与轴交于点.(1)求抛物线的表达式;(2)点为抛物线的顶点,在轴上是否存在点,使?若存在,求出点的坐标;若不存在,说明理由;(3)如图2,位于轴右侧且垂直于轴的动直线沿轴正方向从运动到(不含点和点),分别与抛物线、直线以及轴交于点,过点作于点,求面积的最大值.21.(6分)如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).22.(8分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.23.(8分)学校实施新课程改革以来,学生的学习能力有了很大提高,陈老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(:特别好,:好,:一般,:较差).并将调查结果绘制成以下两幅不完整的统计图,请根据统计图解答下列问题:(1)本次调查中,陈老师一共调查了______名学生;(2)将条形统计图补充完整;扇形统计图中类学生所对应的圆心角是_________度;(3)为了共同进步,陈老师从被调查的类和类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.24.(8分)如图,方格纸中有三个点,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)25.(10分)如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP.(1)求证:△BOQ≌△POQ;(2)若直径AB的长为1.①当PE=时,四边形BOPQ为正方形;②当PE=时,四边形AEOP为菱形.26.(10分)如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB,CD.(1)求作此残片所在的圆(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据反比例函数的性质对各选项逐一分析即可.【详解】解:反比例函数,,图像在二、四象限,故A正确.反比例函数,当时,图像关于对称;当时,图像关于对称,故B正确当,的值随值的增大而增大,,则,故C正确在第二象限或者第四象限,的值随值的增大而增大,故D错误故选D【点睛】本题主要考查了反比例函数的性质.2、C【分析】根据一元二次方程的定义得出,求出即可.【详解】解:是关于的一元二次方程,,∴.故选:.【点睛】本题考查了一元二次方程的定义,注意:一元二次方程的一般形式是(、、都是常数,且.3、B【分析】利用正多边形的性质求出∠AOE,∠BOF,∠EOF即可解决问题;【详解】由题意:∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∴∠EOF=180°−72°−60°=48°,∴∠AOB=360°−108°−48°−120°=84°,故选:B.【点睛】本题考查正多边形的性质、三角形内角和定理,解题关键在于掌握各性质定义.4、C【解析】由旋转可知∠BAC=∠A’,∠A’CA=20°,据此可进行解答.【详解】解:由旋转可知∠BAC=∠A’,∠A’CA=20°,由AC⊥A’B’可得∠BAC=∠A’=90°-20°=70°,故选择C.【点睛】本题考查了旋转的性质.5、C【解析】根据二次函数的定义,易得S是R的二次函数,故选C.6、C【分析】方程变形为x1=4,再把方程两边直接开方得到x=±1.【详解】解:x1=4,∴x=±1.故选C.7、C【解析】试题解析:∵二次函数y=ax2+bx+c的顶点为(1,-4),∴对称轴为x=1,而对称轴左侧图象与x轴交点横坐标的取值范围是-3<x<-2,∴右侧交点横坐标的取值范围是4<x<1.故选C.考点:图象法求一元二次方程的近似根.8、A【分析】关于x的一元二次方程x²+2x+k=0有两个相等的实数根,可知其判别式为0,据此列出关于k的不等式,解答即可.【详解】根据一元二次方程根与判别式的关系,要使得x2﹣2+k=0有两个相等实根,只需要△=(-2)²-4k=0,解得k=1.故本题正确答案为A.【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9、B【分析】直接利用垂径定理进而结合圆周角定理得出是等腰直角三角形,进而得出答案.【详解】半径弦于点,,,,是等腰直角三角形,,,则半径.故选:B.【点睛】此题主要考查了勾股定理,垂径定理和圆周角定理,正确得出是等腰直角三角形是解题关键.10、D【分析】根据菱形和矩形都是平行四边形,都具备平行四边形性质,再结合菱形及矩形的性质,对各选项进行判断即可.【详解】解:因为菱形和矩形都是平行四边形,都具备平行四边形性质,即对边平行而且相等,对角相等,对角线互相平分.、对边平行且相等是菱形矩形都具有的性质,故此选项错误;、对角相等是菱形矩形都具有的性质,故此选项错误;、对角线互相平分是菱形矩形都具有的性质,故此选项错误;、对角线互相垂直是菱形具有而矩形不具有的性质,故此选项正确;故选:D.【点睛】本题考查了平行四边形、矩形及菱形的性质,属于基础知识考查题,同学们需要掌握常见几种特殊图形的性质及特点.二、填空题(每小题3分,共24分)11、【分析】首先在△ABC中,根据三角函数值计算出AC的长,然后根据正切定义可算出.【详解】∵,,∴,∵AB=2,∴AC=6,∵AC⊥CD,∴,∴故答案为:.【点睛】本题考查了解直角三角形,熟练掌握正弦,正切的定义是解题的关键.12、1【分析】过点F作FC⊥x轴于点C,设点F的坐标为(a,b),从而得出OC=a,FC=b,根据矩形的性质可得AB=FC=b,BF=AC,结合已知条件可得OA=3a,BF=AC=2a,根据点E、F都在反比例函数图象上可得EA=,从而求出BE,然后根据三角形的面积公式即可求出ab的值,从而求出k的值.【详解】解:过点F作FC⊥x轴于点C,设点F的坐标为(a,b)∴OC=a,FC=b∵∴四边形FCAB是矩形∴AB=FC=b,BF=AC∵∴,即AC∴OC=OA-AC=a解得:OA=3a,BF=AC=2a∴点E的横坐标为3a∵点E、F都在反比例函数的图象上∴∴点E的纵坐标,即EA=∴BE=AB-EA=∵∴即解得:∴故答案为:1.【点睛】此题考查的是反比例函数与图形的面积问题,掌握矩形的判定及性质、反比例函数比例系数与图形的面积关系和三角形的面积公式是解决此题的关键.13、【分析】记原来三角形的面积为s,第一个小三角形的面积为,第二个小三角形的面积为,…,求出,,,探究规律后即可解决问题.【详解】解:记原来三角形的面积为s,第一个小三角形的面积为,第二个小三角形的面积为,…,∵,,,∴,∴.故答案为:.【点睛】本题考查了三角形中位线定理,三角形的面积,图形类规律探索等知识,解题的关键是循环从特殊到一般的探究方法,寻找规律,利用规律即可解决问题.14、1【分析】把x=1代入x2+ax+b=0得到1+a+b=0,易求a+b=-1,将其整体代入所求的代数式进行求值即可.【详解】∵x=1是一元二次方程x2+ax+b=0的一个根,∴12+a+b=0,∴a+b=﹣1.∴a2+b2+2ab=(a+b)2=(﹣1)2=1.15、1【分析】根据菱形的性质得出CD=AD,BC∥OA,根据D
(4,2)和反比例函数的图象经过点D求出k=8,C点的纵坐标是2×2=4,求出C的坐标,即可得出答案.【详解】∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D
(4,2),反比例函数的图象经过点D,∴k=8,C点的纵坐标是2×2=4,∴,把y=4代入得:x=2,∴n=3−2=1,∴向左平移1个单位长度,反比例函数能过C点,故答案为1.【点睛】本题主要考查了反比例函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,数形结合思想是关键.16、小智【分析】通过比较线段的长短,即可得到OC>OD>OB>OA,进而得出表示最好成绩的点为点C.【详解】由图可得,OC>OD>OB>OA,∴表示最好成绩的点是点C,故答案为:小智.【点睛】本题主要参考了比较线段的长短,比较两条线段长短的方法有两种:度量比较法、重合比较法.17、3【解析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×=×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x的方程,从而得到答案.18、5【分析】联立两函数解析式求出交点坐标,得出m,n的值,即可解决本题.【详解】解:联立两函数解析式:,解得:或,当时,,当时,,综上,5,故答案为5.【点睛】本题是对反比例函数和一次函数的综合考查,熟练掌握反比例函数及解一元二次方程知识是解决本题的关键.三、解答题(共66分)19、(1)原方程无实数根.(2)x1=1,x2=﹣3.【分析】(1)判断一元二次方程根的情况,只要看根的判别式△=b2-4ac的值的符号即可判断:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.(2)把m的值代入方程,用因式分解法求解即可.【详解】解:(1)∵当m=3时,△=b2﹣4ac=22﹣4×3=﹣8<1,∴原方程无实数根.(2)当m=﹣3时,原方程变为x2+2x﹣3=1,∵(x﹣1)(x+3)=1,∴x﹣1=1,x+3=1.∴x1=1,x2=﹣3.20、(1);(2)不存在,理由见解析;(3)最大值为.【分析】(1)利用待定系数法求出解析式;(2)设点N的坐标为(0,m),过点M做MH⊥y轴于点H,证得△MHN∽△NOB,利用对应边成比例,得到,方程无实数解,所以假设错误,不存在;(3)△PQE∽△BOC,得,得到,当PE最大时,最大,求得直线的解析式,设点P的坐标为,则E,再求得PE的最大值,从而求得答案.【详解】(1)把点A(-2,0)、B(8,0)、C(0,4)分别代入,得:,解得,则该抛物线的解析式为:;(2)不存在∵抛物线经过A(-2,0)、B(8,0),∴抛物线的对称轴为,将代入得:,∴抛物线的顶点坐标为:,假设在轴上存在点,使∠MNB=90,设点N的坐标为(0,m),过顶点M做MH⊥y轴于点H,∴∠MNH+∠ONB=90,∠MNH+∠HMN=90,∴∠HMN=∠ONB,∴△MHN∽△NOB,∴,∵B(8,0),N(0,m),,∴,∴,整理得:,∵,∴方程无实数解,所以假设错误,在轴上不存在点,使∠MNB=90;(3)∵PQ⊥BC,PF⊥OB,∴,∴EF∥OC,∴,∴△PQE∽△BOC,得,∵B(8,0)、C(0,4),∴,,,∴,∴,∴当PE最大时,最大,设直线的解析式为,将B(8,0)、C(0,4)代入得,解得:,∴直线的解析式为,设点P的坐标为,则点E的坐标为,∴,∵,∴当时,有最大值为4,∴最大值为.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有:待定系数法求二次函数、一次函数解析式,点坐标,相似三角形的判定与性质和三角形的面积求法,特别注意利用数形结合思想的应用.21、小船到B码头的距离是10海里,A、B两个码头间的距离是(10+10)海里【解析】试题分析:过P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、AM、BP.试题解析:如图:过P作PM⊥AB于M,则∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20,∴PM=AP=10,AM=PM=,∴∠BPM=∠PBM=45°,∴PM=BM=10,AB=AM+MB=,∴BP==,即小船到B码头的距离是海里,A、B两个码头间的距离是()海里.考点:解直角三角形的应用-方向角问题.22、1【分析】矩形对角线相等且互相平分,即OA=OD,根据∠AOD=60°可得△AOD为等边三角形,即OA=AD,∵AE⊥BD,∴E为OD的中点,即可求OE的值.【详解】解:∵对角线相等且互相平分,∴OA=OD∵∠AOD=60°∴△AOD为等边三角形,则OA=AD,BD=2DO,AB=AD,∴AD=2,∵AE⊥BD,∴E为OD的中点∴OE=OD=AD=1,答:OE的长度为1.【点睛】本题考查了矩形对角线的性质,利用矩形对角线相等是解题关键.23、(1)20;(2)见解析,36;(3)见解析,【分析】(1)由题意根据对应人数除以所占比值即可求出陈老师一共调查了多少名学生;(2)根据题意补充条形统计图并类学生所对应的整个数据的比例乘以360°即可求值;(3)根据题意利用列表法或树状图法求概率即可.【详解】解:(1)由题意可得:(6+4)÷50%=20;(2)C类学生人数:20×25%=5(名),C类女生人数:5-2=3(名),D类学生占的百分比:1-15%-50%-25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2-1=1(名),补充条形统计图如图类学生所对应的圆心角:×360°=36°;(3)由题意画树形图如下:所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)==;解法二:列表如下,A类学生中的两名女生分别记为A1和A2,女A1女A2男A男D(女A1,男D)(女A2,男D)(男A,男D)女D(女A1,女D)(女A2,女D)(男A,女D)共有6种等可能的结果,其中,一男一女的有3种,所以所选两名学生中恰好是一名男生和一名女生的概率为=.【点睛】本题考查列表法或树状图法求概率以及条形统计图与扇形统计图.熟练掌握概率等于所求情况数与总情况数之比是解题关键.24、(1)见解析;(2)见解析;(3)见解析.【分析】可以从特殊四边形着手考虑,平行四边形是中心对称图形但不是轴对称图形,等腰梯形是轴对称图形但不是中心对称图形,正方形既是轴对称图形又是中心对称图形【详解】解:如图:2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 借款经营合同范例
- 2024年城市绿化提升项目合同
- 公司房产赠与合同范例
- 农村种树合同范例
- 岭南师范学院《光学》2021-2022学年第一学期期末试卷
- 企业涨薪合同范例
- 代帐公司合同范例
- 吸塑采购合同范例
- 农机预售合同范例
- 天然新鲜蔬菜采购合同范例
- 电气工器具的使用
- 常见标点符号的用法95069
- 参保职工未就业配偶承诺书.docx
- 大陆漂移说与块构造学说
- 抖音快闪自我介绍PPT模板 (英文)
- GR&R自动生成Excel表格(MSA第四版)
- 中医四季养生PPT课件
- 少数民族服饰文化资源保护与产业开发研究_以云南为例_张蓓蓓
- U型渡槽结构计算书
- 铁道车辆红外线轴温探测设备
- 《安全领导力讲解》PPT课件课件
评论
0/150
提交评论