




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时方程的根与函数的零点复习提出问题①已知函数f(x)=mx2+mx+1没有零点,求实数m的范围.②证明函数f(x)=x2+6x+10没有零点.③已知函数f(x)=2mx2-x+m有一个零点,求实数m的范围.④已知函数f(x)=2(m+1)x2+4mx+2m-1有两个零点,求实数m的范围.活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:①因为Δ=m2-4m<0或m=0,∴0≤m<4.②因为Δ=36-40=-4<0,∴没有零点.③Δ=1-4m2=0或m=0,∴m=或m=或m=0.④Δ=16m2-8(m+1)(2m-1)=-8m+8>0且2(m+1)≠0,∴m<1且m≠-1.导入新课思路1.(情景导入)歌中唱到:再“穿过”一条烦恼的河流明天就会到达,同学们知道生活中“穿过”的含义.请同学们思考用数学语言是怎样描述函数图象“穿过”x轴的?学生思考或讨论回答:利用函数值的符号,即f(a)f(b)<0.思路2.(直接导入)教师直接点出课题:这一节我们将进一步巩固有关方程的根与函数的零点的知识,总结求方程的根与函数的零点的方法,探寻其中的规律.推进新课新知探究提出问题①如果函数相应的方程不易求根,其图象也不易画出,怎样讨论其零点?②用数学语言总结判断零点存在性定理,并找出好的理解记忆方法.活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:①在闭区间[a,b]上,若f(a)f(b)<0,y=f(x)连续,则(a,b)内有零点.②如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.我们把它叫做零点存在性定理.因为闭区间端点符号相反的连续函数在开区间内有零点,可以简记为:“闭端反连(脸),开内零点.”应用示例思路1例1求函数f(x)=lnx+2x-6的零点的个数.活动:根据零点概念,学生先思考或讨论后再回答,教师点拨、提示:因为方程lnx+2x-6=0的根不易求得,函数f(x)=lnx+2x-6的图象不易画出,如果不借助计算机,怎么判断零点个数?可以利用f(a)f(b)<0,及函数单调性.解:利用计算机作出x,f(x)的对应值表:x123456789f(x)-4-1.30691.09863.38635.60947.79189.945012.079414.1972由表和图3-1-1-15可知,f(2)<0,f(3)>0,则f(2)f(3)<0,这说明f(x)在区间(2,3)内有零点.由于函数在定义域(0,+∞)内是增函数,所以它仅有一个零点.图3-1-1-15图3-1-1-16变式训练证明函数f(x)=lgx+x-8有且仅有一个零点.证明:如图3-1-1-16,因为f(1)=-7,f(10)=3,∴f(1)f(10)<0.∴函数f(x)=lgx+x-8有一个零点.∵y=lgx为增函数,y=x-8是增函数,∴函数f(x)=lgx+x-8是增函数.∴函数f(x)=lgx+x-8有且仅有一个零点.点评:判断零点的个数:(1)利用零点存在性定理判断存在性;(2)利用单调性证明唯一性.例2已知函数f(x)=3x+,(1)判断函数零点的个数.(2)找出零点所在区间.解:(1)设g(x)=3x,h(x)=,作出它们的图象(图3-1-1-17),两函数图象交点的个数即为f(x)零点的个数.所以两函数图象有且仅有一个交点,即函数f(x)=3x+有且仅有一个零点.图3-1-1-17(2)因为f(0)=-1,f(1)=2.5,所以零点x∈(0,1).变式训练证明函数f(x)=2x+4x-4有且仅有一个零点.证明:利用计算机作出x,f(x)的对应值表:x-101234567f(x)-7.5-32816284884172图3-1-1-18由表和图3-1-1-18可知,f(0)<0,f(1)>0,则f(0)f(1)<0,这说明f(x)在区间内有零点.下面证明函数在定义域(-∞,+∞)内是增函数.设x1,x2∈(-∞,+∞),且x1<x2,f(x1)-f(x2)=2+4x1-4-(2+4x2-4)=2-2+4(x1-x2)=2(2-x2-1)+4(x1-x2).∵x1<x2,∴x1-x2<0,2-x2-1<0,2>0.∴f(x1)-f(x2)<0.∴函数在定义域(-∞,+∞)内是增函数.则函数f(x)=2x+4x-4有且仅有一个零点.思路2例1证明函数y=2|x|-2恰有两个零点.图3-1-1-19证明:如图3-1-1-19,∵f(-2)=2,f(0)=-1,f(2)=2,∴f(-2)f(0)<0,f(0)f(2)<0.∴函数y=2|x|-2有两个零点.要证恰有两个零点,需证函数y=2|x|-2在(0,+∞)上为单调的,函数y=2|x|-2在(-∞,0)上为单调的.∵在(0,+∞)上,函数y=2|x|-2可化为y=2x-1,下面证明f(x)=2x-1在(0,+∞)上为增函数.证明:设x1,x2为(0,+∞)上任意两实数,且0<x1<x2,∵f(x1)-f(x2)=2-2-(2-2)=2-2=2(2-x2-1),∵0<x1<x2,∴x1-x2<0,2-x2<1.∴2>0,2-x2-1<0.∴2(2-x2-1)<0.∴f(x1)-f(x2)<0.∴f(x1)<f(x2).∴函数y=2|x|-2在(0,+∞)上为增函数.同理可证函数y=2|x|-2在(-∞,0)上为减函数.∴函数y=2|x|-2恰有两个零点.变式训练证明函数f(x)=x+-3在(0,+∞)上恰有两个零点.证明:∵f()=,f(1)=-1,f(3)=,∴f()f(1)<0,f(1)f(3)<0.∴函数f(x)=x+-3在(0,+∞)上有两个零点.要证恰有两个零点,需证函数f(x)=x+-3在(0,1)上为单调的,函数f(x)=x+-3在(1,+∞)上为单调的.证明:设x1,x2为(0,1)上的任意两实数,且x1<x2.∵f(x1)-f(x2)=x1+-3-(x2+-3)=(x1-x2)+()=(x1-x2)+=(x1-x2)(),∵0<x1<x2<1,∴x1-x2<0,<0.∴(x1-x2)()>0.∴f(x1)-f(x2)>0.∴函数f(x)=x+-3在(0,1)上为减函数.同理函数f(x)=x+-3在(1,+∞)上为增函数.∴函数f(x)=x+-3在(0,+∞)上恰有两个零点(如图3-1-1-20).图3-1-1-20点评:证明函数零点的个数是一个难点和重点,对于基本初等函数可以借助函数图象和方程来讨论.对于较复杂的函数证明函数恰有n个零点,先找出有n个,再利用单调性证明仅有n个.例2已知函数f(x)=ax3+bx2+cx+d有三个零点,分别是0、1、2,如图3-1-1-21,求证:b<0.图3-1-1-21活动:根据零点概念,学生先思考或讨论后再回答,教师点拨、提示:方法一:把零点代入,用a、c表示b.方法二:用参数a表示函数.证法一:因为f(0)=f(1)=f(2)=0,所以d=0,a+b+c=0,4a+2b+c=0.所以a=,c=b.所以f(x)=x(x2-3x+2)=x(x-1)(x-2).当x<0时,f(x)<0,所以b<0.证法二:因为f(0)=f(1)=f(2)=0,所以f(x)=ax(x-1)(x-2).当x>2时,f(x)>0,所以a>0.比较同次项系数,得b=-3a.所以b<0.变式训练函数y=ax2-2bx的一个零点为1,求函数y=bx2-ax的零点.答案:函数y=bx2-ax的零点为0、2.点评:如果题目给出函数的零点,这涉及到零点的应用问题.(1)可以考虑把零点代入用待定系数法解决问题.(2)利用零点的特殊性把解析式的设法简单化.知能训练1.函数f(x)=lgx-2x2+3的零点一定位于下列哪个区间?()A.(4,5)B.(1,2)C.(2,3)D.(3,4)2.若函数f(x)=2mx+4在[-2,1]上存在零点,则实数m的取值范围是()A.[4]B.(-∞,-2]∪[1,+∞)C.[-1,2]D.(-2,1)3.已知函数f(x)=-3x5-6x+1,有如下对应值表:x-2-1.5012f(x)10944.171-8-107函数y=f(x)在哪几个区间内必有零点?为什么?答案:1.B2.B3.(0,1),因为f(0)·f(1)<0.点评:结合函数图象性质判断函数零点所在区间是本节重点,应切实掌握.拓展提升方程lnx+2x+3=0根的个数及所在的区间,能否进一步缩小根所在范围?分析:利用函数图象(图3-1-1-22)进行探索分析.图3-1-1-22解:(1)观察函数的图象计算f(1)、f(2),知f(x)=lnx+2x+3有零点.(2)通过证明函数的单调性,知f(x)=lnx+2x+3有一个零点x∈(1,2).请同学们自己探究能否进一步缩小根所在范围?借助计算机可以验证同学们判断,激发学生学习兴趣.课堂小结(1)学会由函数解析式讨论零点个数,证明零点个数.(2)思想方法:函数方程思想、数形结合思想、分类讨论思想.作业课本P88练习2.设计感想如何用数学语言描述“穿过”是本节的关键,本节从导入开始让学生体会数学语言与文字语言的区别,并进一步让学生学会应用数学语言描述零点存在性定理.本节多次用计算机作图来感知函数零点,在零点证明题中又经常用到函数的单调性进行严格证明,所以本节是数与形的完美统一.下课啦,咱们来听个小故事吧:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。
活动过程:
1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”
主持人口述谜语:
“双手抓不起,一刀劈不开,
煮饭和洗衣,都要请它来。”
主持人问:“谁知道这是什么?”生答:“水!”
一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”
主持人:我宣布:“水”是万物之源主题班会现在开始。
水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”
甲:如果没有水,我们人类就无法生存。
小熊说:我们动物可喜欢你了,没有水我们会死掉的。
花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。
主持人:下面请听快板《水的用处真叫大》
竹板一敲来说话,水的用处真叫大;
洗衣服,洗碗筷,洗脸洗手又洗脚,
煮饭洗菜又沏茶,生活处处离不开它。
栽小树,种庄稼,农民伯伯把它夸;
鱼儿河马大对虾,日日夜夜不离它;
采煤发电要靠它,京城美化更要它。
主持人:同学们,听完了这个快板,你们说水的用处大不大?
甲说:看了他们的快板表演,我知道日常生活种离不了水。
乙说:看了表演后,我知道水对庄稼、植物是非常重要的。
丙说:我还知道水对美化城市起很大作用。
2.主持人:水有这么多用处,你们该怎样做呢?
(1)(生):我要节约用水,保护水源。
(2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。
(3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。
(4)(生):我要用洗脚水冲厕所。
3.主持人:大家谈得都很好,下面谁想出题考考大家,答对了请给点掌声。
(1)(生):小明让爸爸刷车时把水龙头开小点,请回答对不对。
(2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。
(3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。(电话内容略写)
(4)一生说:主持人我们想给大家表演一个小品行吗?
主持人:可以,大家欢迎!请看小品《这又不是我家的》
大概意思是:学校男厕所便池堵了,水龙头又大开,水流满地。学生甲乙丙三人分别上厕所,看见后又皱眉又骂,但都没有关水管,嘴里还念念有词,又说:“反正不是我家的。”
旁白:“那又是谁家的呢?”
主持人:看完这个小品,你们有什么想法吗?谁愿意给大家说说?
甲:刚才三个同学太自私了,公家的水也是大家的,流掉了多可惜,应该把水龙头关上。
乙:上次我去厕所看见水龙头没关就主动关上了。
主持人:我们给他鼓鼓掌,今后你们发现水龙头没关会怎样做呢?
齐:主动关好。
小记者:同学们,你们好!我想打扰一下,听说你们正在开班会,我想采访一下,行吗?
主持人:可以。
小记者:这位同学,你好!通过参加今天的班会你有什么想法,请谈谈好吗?
答:我要做节水的主人,不浪费一滴水。
小记者:请这位同学谈谈好吗?
答:今天参加班会我知道了节约每一滴水要从我们每个人做起。我想把每个厕所都贴上“节约用水”的字条,这样就可以提醒同学们节约用水了。
小记者:你们谈得很好,我的收获也很大。我还有新任务先走了,同学们再见!
水跑上来说:同学们,今天我很高兴,我“水伯伯”今天很开心,你们知道了有了我就有了生命的源泉,请你们今后一定节约用水呀!让人类和动物、植物共存,迎接美好的明天!
主持人:你们还有发言的吗?
答:有。
生:我代表人们谢谢你,水伯伯,节约用水就等于保护我们人类自己。
动物:小熊上场说:我代表动物家族谢谢你了,我们也会保护你的!
花草树木跑上场说:我们也不会忘记你的贡献!
水伯伯:(手舞足蹈地跳起了舞蹈)……同学们的笑声不断。
主持人:水伯伯,您这是干什么呢?
水伯伯:因为我太高兴了,今后还请你们多关照我呀!
主持人:水伯伯,请放心,今后我们一定会做得更好!再见!
4.主持人:大家欢迎老师讲话!
同学们,今天我们召开的班会非常生动,非常有意义。水是生命之源,无比珍贵,愿同学们能加倍珍惜它,做到节约一滴水,造福子孙后代。
5.主持人宣布:“水”是万物之源主题班会到此结束。
6.活动效果:
此次活动使学生明白了节约用水的道理,浪费水的现象减少了,宣传节约用水的人增多了,人人争做节水小标兵
活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。
活动过程:
1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”
主持人口述谜语:
“双手抓不起,一刀劈不开,
煮饭和洗衣,都要请它来。”
主持人问:“谁知道这是什么?”生答:“水!”
一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”
主持人:我宣布:“水”是万物之源主题班会现在开始。
水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”
甲:如果没有水,我们人类就无法生存。
小熊说:我们动物可喜欢你了,没有水我们会死掉的。
花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。
主持人:下面请听快板《水的用处真叫大》
竹板一敲来说话,水的用处真叫大;
洗衣服,洗碗筷,洗脸洗手又洗脚,
煮饭洗菜
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省三晋联盟山西名校2024-2025学年高一上学期11月期中联合考试数学试题(解析版)
- 2025年一级造价师之工程造价案例分析(水利)模考模拟试题(全优)
- 房地产项目的市场细分与定位
- 施工质量控制中的BIM技术应用
- 2019-2025年演出经纪人之演出经纪实务考前冲刺模拟试卷B卷含答案
- 环境经济项目合同履行国际交流重点基础知识点归纳
- 元旦祝福故事与欢笑
- 护理信息化应用
- 染发后的正确护理方法
- 基于大数据的绿色施工决策支持系统
- 运用PDCA循环提高全麻患者体温检测率
- 人教版高中数学A版 必修第2册《第十章 概率》大单元整体教学设计
- 敦煌的艺术智慧树知到期末考试答案章节答案2024年北京大学
- 《管理会计》说课及试讲
- 二手农机买卖合同协议书
- 北京市西城区2023-2024学年高一下学期期末考试化学试题
- 人音版八年级音乐上册(简谱)第三单元《天路》教学设计
- 2024年山东省聊城市冠县中考一模英语试题(原卷版)
- 国开可编程控制器应用形考实训任务六
- 周志华-机器学习-Chap01绪论-课件
- 住院医师规范化培训临床小讲课的设计与实施培训课件
评论
0/150
提交评论