湘教版选修典型统计案例 一元线性回归案例_第1页
湘教版选修典型统计案例 一元线性回归案例_第2页
湘教版选修典型统计案例 一元线性回归案例_第3页
湘教版选修典型统计案例 一元线性回归案例_第4页
湘教版选修典型统计案例 一元线性回归案例_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.4一元线性回归案例(一)1.相关系数的计算公式:(3)对两个变量进行的线性分析叫做线性回归分析。2.回归直线方程:(2)相应的直线叫做回归直线。(1)所求直线方程叫做回归直线方程;其中(注意回归直线一定经过样本点的中心)例1.

在7块并排、形状大小相同的试验田上进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:(单位kg)施化肥量x15202530354045水稻产量y330345365405445450455(1)画出上表的散点图;(2)求出回归直线并且画出图形30399.3700087175利用回归直线方程对总体进行线性相关性的检验

例2.炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系。如果已测得炉料熔化完毕时,钢水的含碳量x与冶炼时间y(从炉料熔化完毕到出刚的时间)的一列数据,如下表所示:x(0.01%)104180190177147134150191204121y(min)100200210185155135170205235125(1)y与x是否具有线性相关关系;(2)如果具有线性相关关系,求回归直线方程;(3)预测当钢水含碳量为160个0.01%时,应冶炼多少分钟?(1)列出下表,并计算i12345678910xi104180190177147134150191204121yi100200210185155135170205235125xiyi10400360003990032745227851809025500391554794015125所以回归直线的方程为=1.267x-30.51(3)当x=160时,1.267.160-30.51=172(2)设所求的回归方程为练习1、假设关于某设备的使用年限x和所有支出的维修费用y(万元)有如下的统计数据:x23456Y2.23.85.56.57.0若由此资料所知y对x呈线性相关关系,试求:回归直线方程估计使用年限为10年时,维修费用是多少?解题步骤:1.作散点图2.把数据列表,计算相应的值,求出回归系数3.写出回归方程,并按要求进行预测说明。解:(1)由已知数据制成表格。12345合计23456202.23.85.56.57.0254.411.422.032.542.0112.34916253690所以有练习2(广东)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据。X3456y2.5344.5请画出上表数据的散点图请根据上表提供的数据,用最小二乘法求出y关于x的性回归方程(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100

吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:)小结:一般地,建立一元线性回归模型的基本步骤为:(1)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等),计算相关系数。(2)由经验确定回归方程的类型(如我们观察到数据呈

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论