版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省山师附中高三下第二次段考试数学试题(理)试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有()A.120种 B.240种 C.480种 D.600种2.展开项中的常数项为A.1 B.11 C.-19 D.513.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是()A. B.C. D.4.欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在中,为上异于,的任一点,为的中点,若,则等于()A. B. C. D.6.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为()A. B. C.6 D.与点O的位置有关7.已知为定义在上的奇函数,且满足当时,,则()A. B. C. D.8.《普通高中数学课程标准(2017版)》提出了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是()A.甲的数据分析素养高于乙B.甲的数学建模素养优于数学抽象素养C.乙的六大素养中逻辑推理最差D.乙的六大素养整体平均水平优于甲9.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、、元).甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为()A. B. C. D.11.已知椭圆的焦点分别为,,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为()A. B. C. D.12.已知变量,满足不等式组,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.实数,满足约束条件,则的最大值为__________.14.设f(x)=etx(t>0),过点P(t,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1)),则△PRS的面积的最小值是_____.15.四面体中,底面,,,则四面体的外接球的表面积为______16.已知函数,则曲线在点处的切线方程是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)解不等式;(2)若,,,求证:.18.(12分)如图,三棱锥中,(1)证明:面面;(2)求二面角的余弦值.19.(12分)已知函数.(1)求曲线在点处的切线方程;(2)若对任意的,当时,都有恒成立,求最大的整数.(参考数据:)20.(12分)已知函数.(1)若在上是减函数,求实数的最大值;(2)若,求证:.21.(12分)市民小张计划贷款60万元用于购买一套商品住房,银行给小张提供了两种贷款方式.①等额本金:每月的还款额呈递减趋势,且从第二个还款月开始,每月还款额与上月还款额的差均相同;②等额本息:每个月的还款额均相同.银行规定,在贷款到账日的次月当天开始首次还款(若2019年7月7日贷款到账,则2019年8月7日首次还款).已知小张该笔贷款年限为20年,月利率为0.004.(1)若小张采取等额本金的还款方式,现已得知第一个还款月应还4900元,最后一个还款月应还2510元,试计算小张该笔贷款的总利息;(2)若小张采取等额本息的还款方式,银行规定,每月还款额不得超过家庭平均月收入的一半,已知小张家庭平均月收入为1万元,判断小张该笔贷款是否能够获批(不考虑其他因素);(3)对比两种还款方式,从经济利益的角度来考虑,小张应选择哪种还款方式.参考数据:.22.(10分)在直角坐标系中,曲线的参数方程为:(其中为参数),直线的参数方程为(其中为参数)(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程;(2)若曲线与直线交于两点,点的坐标为,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
首先将五天进行分组,再对名著进行分配,根据分步乘法计数原理求得结果.【题目详解】将周一至周五分为组,每组至少天,共有:种分组方法;将四大名著安排到组中,每组种名著,共有:种分配方法;由分步乘法计数原理可得不同的阅读计划共有:种本题正确选项:【题目点拨】本题考查排列组合中的分组分配问题,涉及到分步乘法计数原理的应用,易错点是忽略分组中涉及到的平均分组问题.2、B【解题分析】
展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.【题目详解】展开式中的项为常数项,有3种情况:(1)5个括号都出1,即;(2)两个括号出,两个括号出,一个括号出1,即;(3)一个括号出,一个括号出,三个括号出1,即;所以展开项中的常数项为,故选B.【题目点拨】本题考查二项式定理知识的生成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.3、A【解题分析】
由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【题目详解】根据题意,的图象与直线的相邻交点间的距离为,所以的周期为,则,所以,由正弦函数和正切函数图象可知正确.故选:A.【题目点拨】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.4、A【解题分析】
计算,得到答案.【题目详解】根据题意,故,表示的复数在第一象限.故选:.【题目点拨】本题考查了复数的计算,意在考查学生的计算能力和理解能力.5、A【解题分析】
根据题意,用表示出与,求出的值即可.【题目详解】解:根据题意,设,则,又,,,故选:A.【题目点拨】本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题.6、B【解题分析】
根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【题目详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【题目点拨】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.7、C【解题分析】
由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【题目详解】由题意,,则函数的周期是,所以,,又函数为上的奇函数,且当时,,所以,.故选:C.【题目点拨】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.8、D【解题分析】
根据雷达图对选项逐一分析,由此确定叙述正确的选项.【题目详解】对于A选项,甲的数据分析分,乙的数据分析分,甲低于乙,故A选项错误.对于B选项,甲的建模素养分,乙的建模素养分,甲低于乙,故B选项错误.对于C选项,乙的六大素养中,逻辑推理分,不是最差,故C选项错误.对于D选项,甲的总得分分,乙的总得分分,所以乙的六大素养整体平均水平优于甲,故D选项正确.故选:D【题目点拨】本小题主要考查图表分析和数据处理,属于基础题.9、C【解题分析】
化简复数为、的形式,可以确定对应的点位于的象限.【题目详解】解:复数故复数对应的坐标为位于第三象限故选:.【题目点拨】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题.10、B【解题分析】
甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得.【题目详解】由题意甲、乙租车费用为3元的概率分别是,∴甲、乙两人所扣租车费用相同的概率为.故选:B.【题目点拨】本题考查独立性事件的概率.掌握独立事件的概率乘法公式是解题基础.11、B【解题分析】
根据题意可得易知,且,解方程可得,再利用即可求解.【题目详解】易知,且故有,则故选:B【题目点拨】本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题12、B【解题分析】
先根据约束条件画出可行域,再利用几何意义求最值.【题目详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【题目点拨】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、10【解题分析】
画出可行域,根据目标函数截距可求.【题目详解】解:作出可行域如下:由得,平移直线,当经过点时,截距最小,最大解得的最大值为10故答案为:10【题目点拨】考查可行域的画法及目标函数最大值的求法,基础题.14、【解题分析】
计算R(t,0),PR=t﹣(t),△PRS的面积为S,导数S′,由S′=0得t=1,根据函数的单调性得到最值.【题目详解】∵PQ∥y轴,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的导数f′(x)=tetx,∴过Q的切线斜率k=t,设R(r,0),则k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面积为S,导数S′,由S′=0得t=1,当t>1时,S′>0,当0<t<1时,S′<0,∴t=1为极小值点,也为最小值点,∴△PRS的面积的最小值为.故答案为:.【题目点拨】本题考查了利用导数求面积的最值问题,意在考查学生的计算能力和应用能力.15、【解题分析】
由题意画出图形,补形为长方体,求其对角线长,可得四面体外接球的半径,则表面积可求.【题目详解】解:如图,在四面体中,底面,,,可得,补形为长方体,则过一个顶点的三条棱长分别为1,1,,则长方体的对角线长为,则三棱锥的外接球的半径为1.其表面积为.故答案为:.【题目点拨】本题考查多面体外接球表面积的求法,补形是关键,属于中档题.16、【解题分析】
求导,x=0代入求k,点斜式求切线方程即可【题目详解】则又故切线方程为y=x+1故答案为y=x+1【题目点拨】本题考查切线方程,求导法则及运算,考查直线方程,考查计算能力,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解题分析】
(1)分、、三种情况解不等式,即可得出该不等式的解集;(2)利用分析法可知,要证,即证,只需证明即可,因式分解后,判断差值符号即可,由此证明出所证不等式成立.【题目详解】(1).当时,由,解得,此时;当时,不成立;当时,由,解得,此时.综上所述,不等式的解集为;(2)要证,即证,因为,,所以,,,.所以,.故所证不等式成立.【题目点拨】本题考查绝对值不等式的求解,同时也考查了利用分析法和作差法证明不等式,考查分类讨论思想以及推理能力,属于中等题.18、(1)证明见解析(2)【解题分析】
(1)取中点,连结,证明平面得到答案.(2)如图所示,建立空间直角坐标系,为平面的一个法向量,平面的一个法向量为,计算夹角得到答案.【题目详解】(1)取中点,连结,,,,,为直角,,平面,平面,∴面面.(2)如图所示,建立空间直角坐标系,则,可取为平面的一个法向量.设平面的一个法向量为.则,其中,,不妨取,则..为锐二面角,∴二面角的余弦值为.【题目点拨】本题考查了面面垂直,二面角,意在考查学生的计算能力和空间想象能力.19、(1)(2)2【解题分析】
(1)先求得切点坐标,利用导数求得切线的斜率,由此求得切线方程.(2)对分成,两种情况进行分类讨论.当时,将不等式转化为,构造函数,利用导数求得的最小值(设为)的取值范围,由的得在上恒成立,结合一元二次不等式恒成立,判别式小于零列不等式,解不等式求得的取值范围.【题目详解】(1)已知函数,则处即为,又,,可知函数过点的切线为,即.(2)注意到,不等式中,当时,显然成立;当时,不等式可化为令,则,,所以存在,使.由于在上递增,在上递减,所以是的唯一零点.且在区间上,递减,在区间上,递增,即的最小值为,令,则,将的最小值设为,则,因此原式需满足,即在上恒成立,又,可知判别式即可,即,且可以取到的最大整数为2.【题目点拨】本小题主要考查利用导数求切线方程,考查利用导数研究不等式恒成立问题,考查化归与转化的数学思想方法,属于难题.20、(1)(2)详见解析【解题分析】
(1),在上,因为是减函数,所以恒成立,即恒成立,只需.令,,则,因为,所以.所以在上是增函数,所以,所以,解得.所以实数的最大值为.(2),.令,则,根据题意知,所以在上是增函数.又因为,当从正方向趋近于0时,趋近于,趋近于1,所以,所以存在,使,即,,所以对任意,,即,所以在上是减函数;对任意,,即,所以在上是增函数,所以当时,取得最小值,最小值为.由于,,则,当且仅当,即时取等号,所以当时,.21、(1)2892
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《国际货运代理》题集
- 《规范汉字书写传承中华文化之美》班会教案3篇
- 3.4.1 二次函数y=ax2+k与y=a(x-h)2的图象与性质 同步练习
- 【人教】期末模拟卷01【九年级上下册】
- 专项24-弧、弦、角、距的关系-重难点题型
- 特殊作业票管理制度
- 语法专题十六 主谓一致【考点精讲精练】-2023年中考语法一点通(学生版)
- 青花瓷的教案8篇
- 新生军训心得体会
- 暑假自我总结
- 中职语文课件:1.1《送瘟神》课件14张2023-2024学年中职语文职业模块
- 建筑施工现场车辆管理方案
- 旅游规划与开发(第五版)课件 第十一章 旅游规划图件及其制作
- 物业营运收费优惠活动方案
- 《中小学研学旅行课程开发规范》
- 化疗药物神经毒性
- 新课标视域下的小学数学大单元教学
- 有限空间作业的安全监护人
- 阁楼拆除施工方案
- 金融科技对商业银行盈利能力影响的研究
- Unit 8 Section B(2a-2e)Thanksgiving in North America教学设计2022-2023学年人教版八年级英语上册
评论
0/150
提交评论